Your browser doesn't support javascript.
loading
The Influence of PEG Modification on EGF-PLL Binding Capacities to EGFR / 生物化学与生物物理进展
Progress in Biochemistry and Biophysics ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-589054
ABSTRACT
Cationic polymers are being developed quickly as gene delivery vectors. For in vivo gene delivery, the cationic polymers are usually further modified by hydrophilic polymer grafting or ligand conjugation, which have been shown to increase the vector stability, gene delivery efficiency and specificity greatly. Some previous research had shown that modified hydrophilic polymer may partly shield the targeting ligand and result in poor delivery specificity. Developing a method to evaluate the influence of PEG modification on targeting delivery is particularly critical to cationic polymer design and gene therapy development. One of most commonly used cationic polymer polylysine (PLL) was chosen as a model. Targeting ligand epidermal growth factor(EGF)was conjugated with PLL to form PLL-EGF. Then hydrophilic polymer polyethylene glycol (PEG) with molecular mass 7 000 and 20 000 were used to modify PLL-EGF respectively to generate PEG7000-g-PLL-EGF and PEG20000-g-PLL-EGF. In BIAcore experiments, epidermal growth factor receptor (EGFR) was conjugated onto BIAcore chip and various PEG modified PLL-EGF solutions were flowed over the chip. By observing the change of RU value, the specific interaction of EGF to EGFR was compared. Compared with PLL-EGF, PEG modified PLL-EGF showed lower association rate and higher disassociation rate to EGFR. Furthermore, compared to PEG7000 modified PLL-EGF, PEG20000 modified PLL-EGF got lower association rate and higher disassociation rate to EGFR. The Scatchard analysis results showed that the interactions between EGFR and PLL-EGF or PEG-PLL-EGF are non-linear. It can be concluded that PEG modification indeed reduced the association rate and enhanced the dissociation rate of EGF to EGFR. The length of PEG chain was also a key factor to influence interaction between ligand and receptor. The results showed that it was critical important to evaluate the influence of PEG modification on delivery specificities. The BIAcore method developed in this paper can successfully evaluate the influence, which would be important for cationic polymer design and its application as potential non-viral gene delivery vectors.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Progress in Biochemistry and Biophysics Year: 2006 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Progress in Biochemistry and Biophysics Year: 2006 Type: Article