Your browser doesn't support javascript.
loading
Disc-Type Hyaline Cartilage Reconstruction Using 3D-Cell Sheet Culture of Human Bone Marrow Stromal Cells and Human Costal Chondrocytes and Maintenance of Its Shape and Phenotype after Transplantation
Tissue Engineering and Regenerative Medicine ; (6): 352-363, 2016.
Article in English | WPRIM | ID: wpr-651482
ABSTRACT
In this study, we developed the disc-type bio-cartilage reconstruction strategies for transplantable hyaline cartilage for reconstructive surgery using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes. We compared chondrogenesis efficiency between different chondrogenic-induction methods such as micromass culture, pellet culture, and 3D-cell sheet culture. Among them, the 3D-cell sheet culture resulted in the best chondrogenesis with the disc-type bio-cartilage (>12 mm diameter in size) in vitro, but sometimes spontaneous curling and contraction of 3D-cell sheet culture resulted in the formation of bead-type cartilage, which was prevented by type I collagen coating or by culturing on amniotic membrane. Previously, it was reported that tissue-engineered cartilage reconstructed in vitro does not maintain its cartilage phenotype after transplantation but tends to transform to other tissue type such as bone or connective tissue. However, the disc-type bio-cartilage of 3D-cell sheet culture maintained its hyaline cartilage phenotype even after exposure to the osteogenic-induction condition in vitro for 3 weeks or after the transplantation for 4 weeks in mouse subcutaneous. Collectively, the disc-type bio-cartilage with 12 mm diameter can be reproducibly reconstructed by the 3D-cell sheet culture, whose hyaline cartilage phenotype and shape can be maintained under the osteogenic-induction condition as well as after the transplantation. This disc-type bio-cartilage can be proposed for the application to reconstructive surgery and repair of disc-type cartilage such as mandibular cartilage and digits.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Phenotype / Bone Marrow / In Vitro Techniques / Cartilage / Connective Tissue / Chondrocytes / Chondrogenesis / Collagen Type I / Hyaline Cartilage / Mesenchymal Stem Cells Limits: Animals / Humans Language: English Journal: Tissue Engineering and Regenerative Medicine Year: 2016 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Phenotype / Bone Marrow / In Vitro Techniques / Cartilage / Connective Tissue / Chondrocytes / Chondrogenesis / Collagen Type I / Hyaline Cartilage / Mesenchymal Stem Cells Limits: Animals / Humans Language: English Journal: Tissue Engineering and Regenerative Medicine Year: 2016 Type: Article