Your browser doesn't support javascript.
loading
Effect of tetrandrine on radiosensitivity of nasopharyngeal carcinoma cells / 中国病理生理杂志
Chinese Journal of Pathophysiology ; (12): 1611-1618, 2017.
Article in Chinese | WPRIM | ID: wpr-662744
ABSTRACT

AIM:

To investigate the mechanism of the radiosensitizing effect of maximum non-cytotoxic doses of tetrandrine (Tet) on nasopharyngeal carcinoma cell lines CNE1 and CNE2.

METHODS:

The cells were treated with maximum non-cytotoxic doses of Tet (for CNE1 cells at 1.5 μmol/L and for CNE2 cells at 1.8 μmol/L),irradiation at 4 Gy,or combination of irradiation and maximum non-cytotoxic doses of Tet.The cell cycle distribution was analyzed by flow cytometry.The protein levels of γ-H2AX,cleaved caspase-3,p-CDC25C,CDK1,p-CDK1,cyclin B1,ERK and p-ERK were determined by Western blot.

RESULTS:

The expression of γ-H2AX was increased in CNE1 cells and CNE2 cells after combined treatment with irradiation and maximum non-cytotoxic doses of Tet.The percentages of CNE1 cells and CNE2 cells at G2/M phase in irradiation group were (18.09 ±0.42)% and (18.48 ± 1.32)%,respectively,which were decreased to (15.88 ± 1.04) % and (13.80 ± 0.82) % in combined treatment group,respectively (P < 0.05).Combined treatment enhanced the increase in the protein level of cleaved caspase-3 caused by irradiation.The protein levels of pCDC25C and p-CDK1 were increased in a dose-dependent manner by Tet treatment (P < 0.05),while the expression of CDK1 showed no difference among different doses of Tet treatments.The protein levels of p-CDC25C,p-CDK1 and CDK1 showed no difference after the treatment with maximum non-cytotoxic doses of Tet.The combined treatment with irradiation and the maximum non-cytotoxic doses of Tet decreased the protein levels of p-CDC25C and p-CDK1 (P <0.05),increased the expression of cyclin B1,and had no influence on the expression of CDK1 ( P <0.05).The combined treatment resulted in an increase in the protein level of p-ERK1 (P < 0.05).

CONCLUSION:

The maximum non-cytotoxic doses of Tet enhance the DNA damage and apoptosis in CNE1 cells and CNE2 cells caused by irradiation,and the mechanism might be associated with ending of G2/M arrest via activation of ERK/CDC25C/CDK1/cyclin B1 pathways.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pathophysiology Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pathophysiology Year: 2017 Type: Article