Your browser doesn't support javascript.
loading
Biphasic modulation of chemerin peptide-induced calcium flux and ERK phosphorylation by amyloid beta peptide / 中国药理学与毒理学杂志
Chinese Journal of Pharmacology and Toxicology ; (6): 1020-1021, 2017.
Article in Chinese | WPRIM | ID: wpr-666492
ABSTRACT
OBJECTIVE The chemokine-like receptor 1 (CMKLR1, ChemR23) is a functional receptor for chemerin, the chemerin-derived nonapeptide (C9), and the amyloid β peptide 1-42 (Aβ42). Because these peptides share little sequence homology, studies were conducted to investigate their pharmaco?logical properties and regulation at CMKLR1. METHODS Cells expressing CMKLR1 were incubated with Aβ42 before stimulation with a strong agonist, the C9 peptide. Calcium mobilization, cAMP inhibition and MAP kinase activation were measured. Intramolecular FRET were determined using CMKLR1 constructs with an ECFP attached to the C- terminus and a FlAsH binding motif embedded in the first intracellular loop (IL1). RESULTS Binding of both Aβ42 and the C9 peptide induced CMKLR1 internal?ization, but only the Aβ42-induced receptor internalization involved clathrin-coated pits. Likewise, Aβ42 but not C9 stimulated β-arrestin 2 translocation to plasma membranes. A robust Ca2+ flux was observed following C9 stimulation, whereas Aβ42 was ineffective even at micromolar concentrations. Despite its low potency in calcium mobilization assay, Aβ42 was able to alter C9 -induced Ca2+ flux in dose-dependent manner a potentiation effect at 100 pmol·L-1 of Aβ42 was followed by a suppression at 10 nmol·L-1 and further potentiation at 1 μmol·L-1. This unusual and biphasic modulatory effect was also seen in the C9-induced ERK phosphorylation but the dose curve was opposite to that of Ca2+ flux and cAMP inhibition, suggesting a reciprocal regulatory mechanism. Intramolecular FRET assay confirmed that Aβ42 modulates CMKLR1 rather than its downstream signaling pathways. CONCLUSION These findings suggest Aβ42 as an allosteric modulator that can both positively and negatively regulate the activation state of CMKLR1 in a manner that differs from existing allosteric modulatory mechanisms.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pharmacology and Toxicology Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pharmacology and Toxicology Year: 2017 Type: Article