Your browser doesn't support javascript.
loading
Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 98-107, 2006.
Article in English | WPRIM | ID: wpr-66721
ABSTRACT
Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Pathology / Protons / Relaxation / Water / Cartilage / Anterior Cruciate Ligament / Artifacts / Knee / Knee Joint Type of study: Diagnostic study Language: English Journal: Journal of the Korean Society of Magnetic Resonance in Medicine Year: 2006 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Pathology / Protons / Relaxation / Water / Cartilage / Anterior Cruciate Ligament / Artifacts / Knee / Knee Joint Type of study: Diagnostic study Language: English Journal: Journal of the Korean Society of Magnetic Resonance in Medicine Year: 2006 Type: Article