Your browser doesn't support javascript.
loading
Prokaryotic expression and in vitro enzyme activity analysis of flavonol synthase in Chrysanthemum morifolium cv. 'Hangju' / 中国中药杂志
China Journal of Chinese Materia Medica ; (24): 3471-3476, 2018.
Article in Chinese | WPRIM | ID: wpr-689890
ABSTRACT
We cloned flavonol synthase gene (named as CmFLS) by RACE from Chrysanthemum morifolium cv. 'Hangju' based on transcriptome database. Sequencing results showed that 1 235 bp sequence was acquired with the largest open reading frame (ORF) of 1 008 bp, which encoded 335 amino acids. The predicted CmFLS encoded protein had an isoelectric point (pI) of 5.41. The phylogenetic tree analysis indicated that CmFLS was highly homologous to other FLSs, which identified from the species of Compositae. The recombinant fusion protein, with a molecular mass of 43 kDa, was successfully expressed by prokaryotic expression system. Meanwhile, Ni-NTA resin was used to purify the recombinant fusion protein, and the Ni-Native Buffer containing 250 mmol·L⁻¹ imidazole was most favorable for elution. The purified recombinant fusion protein was subjected to in vitro catalytic reaction, and then the products were extracted and analyzed by HPLC. The results showed that the recombinant fusion protein CmFLS was able to catalyze the production of quercetin by dihydroquercetin under specific buffer and reaction conditions, which indicated that the functional protein encoded by CmFLS had dioxygenase activity in the biosynthetic pathway of flavonoids biosynthesis in Ch. morifolium cv. 'Hangju'. The above results laid the foundation for further studying on CmFLS, and provided new ideas for the regulation of flavonoids metabolism from the molecular level and the catalytic synthesis of flavonols in vitro.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: China Journal of Chinese Materia Medica Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: China Journal of Chinese Materia Medica Year: 2018 Type: Article