Your browser doesn't support javascript.
loading
Umbilical cord mesenchymal stem cell conditioned medium combined with hyaluronic acid for mouse skin repair / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 20-25, 2018.
Article in Chinese | WPRIM | ID: wpr-698334
ABSTRACT

BACKGROUND:

Numerous studies have shown that mesenchymal stem cells (MSCs) can effectively promote tissue repair by secreting various bioactive factors.

OBJECTIVE:

To observe the effects of umbilical cord cord mesenchymal stem cells conditioned media (UCMSCs-CM) combined with hyaluronic acid (HA) on the repair of skin wounds in mice.

METHODS:

The UCMSCs-CM was collected, and added with HA to prepare the gel solution. Forty mice were selected to prepare animal models of full-thickness skin wound. According to different treatments, the mice were randomly divided into four groups, blank control group (0.5 mL of normal saline), UCMSCs-CM group (0.5 mL of UCMSCs-CM), HA group (0.5 mL of HA), UCMSCs-CM+HA group (0.5 mL of UCMSCs-CM+0.5 mL of HA). Each mouse received three treatments a day (in the morning, at noon and at night), for continuous 7 days. The wound size was measured and the wound healing rate was calculated. The factors related to skin repair were detected by immunohistochemstry and qRT-PCR methods. RESULTS AND

CONCLUSION:

After treatment, the wound size was reduced to different extents in the treatment groups as compared with the blank control group. The UCMSCs-CM combined with HA significantly improved the wound healing rate as compared with the other groups (P < 0.01). Strongly positive expression of the factors related in skin injury, such as vascular endothelial growth factor and matrix metalloproteinase 9 protein, were found in the UCMSCs-CM+HA group; moreover, the mRNA levels of basic fibroblast growth factor, transforming growth factor β and matrix metalloproteinase 9 protein were significantly higher in the UCMSCs-CM+HA group than the blank control group (P < 0.01). To conclude, UCMSCs-CM combined with HA can accelerate skin wound repair in mice, and exhibit better effects than the UCMSCs-CM or HA alone, which provides theoretical support for stem cells combined with biological scaffolds in skin wound repair.
Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2018 Type: Article