Your browser doesn't support javascript.
loading
Three-dimensional bioprinting of tissue/organ analogues: a review on techniques, materials and processes / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 1611-1617, 2018.
Article in Chinese | WPRIM | ID: wpr-698586
ABSTRACT

BACKGROUND:

Three-dimensional (3D) bioprinting technology has a huge potential in the tissue engineering field, which is expected to create simple tissue/organ analogues with good biological histocompatibility and biological functions by using living cells and biomaterials.

OBJECTIVE:

To analyze the characteristics of 3D bioprinting technology and all kinds of biomaterials, and to explore its application in the preparation of tissues/organs analogues.

METHODS:

Relevant articles published from 1998 to 2017 were searched in PubMed, Web of Science, MEDLINE, and WanFang databases. The keywords were "3D bioprinting, 3D bioprinting technology, biomaterial, tissue engineering" in English and Chinese, respectively. A total of 88 articles were initially searched and 47 eligible articles were finally reviewed in accordance with the inclusion and exclusion criteria. RESULTS AND

CONCLUSION:

3D bioprinting techniques mainly include inkjet technique (thermal inkjet and piezoelectric inkjet), pressure-assisted technique, laser-assisted technique, and stereolithography technique (single-photon-based and two-photon-based). The bio-ink consists of living cells, natural polymers and synthetic polymers. 3D bioprinting has exhibited a huge potential in the manufacture of living cell-containing tissue/organ analogues. Despite the fact that it has been widely studied, currently used 3D bioprinting techniques can only be used to prepare relatively simple structures with simple biological functions. Research on the specific tissue/organ analogues with living cells are still in its infancy.
Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2018 Type: Article