Your browser doesn't support javascript.
loading
Effects of salvianolic acid D on mitochondrial function and biosynthesis in SH-SY5Y cells after MPP+injury / 中国药理学通报
Chinese Pharmacological Bulletin ; (12): 1211-1218, 2018.
Article in Chinese | WPRIM | ID: wpr-705178
ABSTRACT
Aim To investigate the effects of salvianol-ic acid D ( SalD) on mitochondrial function and bio- synthesis in SH-SY5Y cells after MPP+injury and the possible mechanisms. Methods The cell model was established by MPP+injury in SH-SY5Y cells. The cytotoxicity of MPP+was detected by MTT assay. The effects of SalD on viability of SH-SY5Y cells were ex-amined by MTT and LDH assay. The apoptosis of SH-SY5Y cells was detected by AO/EB assay. The levels of ROS and mitochondrial superoxide were determined using DCFH-DA and MitoSOX probes, respectively. Mitochondrial function was examined by measuring ATP level and mitochondrial membrane potential. The levels of PGC-1α and its downstream regulatory genes NRF1 and TFAM mRNA were detected by qPCR. The protein levels of PGC-1α, NRF1 and TFAM in cells were detected by Western blot and immunofluorescence assays. Results MPP+injury resulted in a significant reduction of cell viability to 51.34%. 0.1, 1, 5 μmol ·L-1SalD and 5 mmol·L-1NAC could reduce MPP+-induced SH-SY5Y cell injury and LDH release. The cell viability increased to 67.98% , 71.79% , 76.91% and 77.55% , respectively. Moreover, SalD could reduce the increase of intracellular ROS and mi-tochondrial superoxide induced by MPP+, decrease mitochondrial membrane potential and improve mito-chondrial function. SalD also significantly increased both the transcription and expression levels of PGC-1α, NRF1 and TFAM. Conclusion SalD could in-hibit MPP+-induced SH-SY5Y cell injury and improve mitochondrial function and mitochondrial biosynthesis.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Pharmacological Bulletin Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Pharmacological Bulletin Year: 2018 Type: Article