Your browser doesn't support javascript.
loading
Metabolic heterogeneity of gastric cancer cell lines / 中国药理学与毒理学杂志
Chinese Journal of Pharmacology and Toxicology ; (6): 278-279, 2018.
Article in Chinese | WPRIM | ID: wpr-705294
ABSTRACT
OBJECTIVE Gastric cancer is one of the most common malignant tumors,and the inci-dence rate is the highest in all kinds of tumors in China. However,it remains unclear that how signifi-cantly gastric cells are dependent on glycolysis,and which type of gastric cells are sensitive to glycolysis inhibition. In this study, several kind of gastric cancer cell lines were used as the research object, and the metabolic characteristics of different cell lines were systematically analyzed to provide theoretical support for the accurate treatment of gastric cancer. METHODS We examined the energy metabolism of four gastric cancer cell lines(MGC-803,SGC-7901,HGC-27 and BGC-823)by using glycolysis inhibitor, 2-deoxy-D-glucose(2-DG)and inhibitor of oxidative phosphorylation,oligomycin.Oxygen consumption rates(OCR)and L-lactate were also measured with an XF96 Analyzer(Seahorse Biosciences)to deter-mine the significance of metabolism of oxidative phosphorylation and aerobic glycolysisin gastric cells. In addition, western blot was used to detect the contribution of AMP-activated protein kinase (AMPK), and anti-apoptotic proteins(Bcl-2 and survivin)to clarify the mechanism of death or survival of gastric cancer cells treated by 2-DG or oligomycin. RESULTS In this study, it was shown that the growth of gastric cell lines were suppressed by 2-DG.However,the sensitivity to 2-DG was quite different among cell linesIC 50 of 2-DG was from 3.28 mmol·L-1(MGC-803)to 15.57 mmol·L-1(BGC-823).MGC-803 was relatively sensitive to 2-DG (IC 503.28 mmol·L-1), consumed more glucose and produced more lactate (waste product of glycolysis) than the three other cell lines. Consequently, MGC-803 could be more dependent on glycolysis than other cell lines, which was further confirmed by the fact that glucose (+)FCS(-)medium showed more growth and survival than glucose(-)FCS(+)medium.Alternatively, BGC-823, most resistant to 2-DG (IC50 15.57 mmol·L- 1), was most sensitive to oligomycin, and showed more growth and survival in glucose(-)FCS(+)medium than in glucose(+)FCS(-)medium. Thus,we had reasons to think BGC-823 cells depended on oxidative phosphorylation for energy production. In BGC-823,AMPK,which is activated when ATP becomes limiting,was rapidly phosphorylated by 2-DG, and expression of Bcl-2 was augmented,which might result in resistance to 2-DG.Interestingly,AMPK phosphorylation and augmentation of Bcl-2 expression by 2-DG were not observed in MGC-803,which is 2-DG sensitive. CONCLUSION There is a large metabolic difference between gastric cancer cell lines,which will facilitate the future gastric cancer therapy by targeting metabolic pathways.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pharmacology and Toxicology Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pharmacology and Toxicology Year: 2018 Type: Article