Your browser doesn't support javascript.
loading
Generation of knockout mouse models of cyclin-dependent kinase inhibitors by engineered nuclease-mediated genome editing / 한국실험동물학회지
Laboratory Animal Research ; : 264-269, 2018.
Article in English | WPRIM | ID: wpr-718841
ABSTRACT
Cell cycle dysfunction can cause severe diseases, including neurodegenerative disease and cancer. Mutations in cyclin-dependent kinase inhibitors controlling the G1 phase of the cell cycle are prevalent in various cancers. Mice lacking the tumor suppressors p16(Ink4a) (Cdkn2a, cyclin-dependent kinase inhibitor 2a), p19(Arf) (an alternative reading frame product of Cdkn2a,), and p27(Kip1) (Cdkn1b, cyclin-dependent kinase inhibitor 1b) result in malignant progression of epithelial cancers, sarcomas, and melanomas, respectively. Here, we generated knockout mouse models for each of these three cyclin-dependent kinase inhibitors using engineered nucleases. The p16(Ink4a) and p19(Arf) knockout mice were generated via transcription activator-like effector nucleases (TALENs), and p27(Kip1) knockout mice via clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9). These gene editing technologies were targeted to the first exon of each gene, to induce frameshifts producing premature termination codons. Unlike preexisting embryonic stem cell-based knockout mice, our mouse models are free from selectable markers or other external gene insertions, permitting more precise study of cell cycle-related diseases without confounding influences of foreign DNA.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Phosphotransferases / Sarcoma / DNA / Cell Cycle / Exons / G1 Phase / Mutagenesis, Insertional / Reading Frames / Genome / Mice, Knockout Limits: Animals Language: English Journal: Laboratory Animal Research Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Phosphotransferases / Sarcoma / DNA / Cell Cycle / Exons / G1 Phase / Mutagenesis, Insertional / Reading Frames / Genome / Mice, Knockout Limits: Animals Language: English Journal: Laboratory Animal Research Year: 2018 Type: Article