Your browser doesn't support javascript.
loading
Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase
Protein & Cell ; (12): 527-537, 2017.
Article in English | WPRIM | ID: wpr-756984
ABSTRACT
Accumulative evidence has shown the adverse effects of a geomagnetic field shielded condition, so called a hypomagnetic field (HMF), on the metabolic processes and oxidative stress in animals and cells. However, the underlying mechanism remains unclear. In this study, we evaluate the role of HMF on the regulation of cellular reactive oxygen species (ROS) in human neuroblastoma SH-SY5Y cells. We found that HMF exposure led to ROS decrease, and that restoring the decrease by additional HO rescued the HMF-enhanced cell proliferation. The measurements on ROS related indexes, including total anti-oxidant capacity, HO and superoxide anion levels, and superoxide dismutase (SOD) activity and expression, indicated that the HMF reduced HO production and inhibited the activity of CuZn-SOD. Moreover, the HMF accelerated the denaturation of CuZn-SOD as well as enhanced aggregation of CuZn-SOD protein, in vitro. Our findings indicate that CuZn-SOD is able to response to the HMF stress and suggest it a mediator of the HMF effect.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Stress, Physiological / Cell Line, Tumor / Magnetic Fields / Superoxide Dismutase-1 / Hydrogen Peroxide / Metabolism / Neoplasm Proteins / Neuroblastoma Limits: Humans Language: English Journal: Protein & Cell Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Stress, Physiological / Cell Line, Tumor / Magnetic Fields / Superoxide Dismutase-1 / Hydrogen Peroxide / Metabolism / Neoplasm Proteins / Neuroblastoma Limits: Humans Language: English Journal: Protein & Cell Year: 2017 Type: Article