Your browser doesn't support javascript.
loading
Cloning and characterization of an aromatic amino acid aminotransferase (ArAT) gene involved in tropane alkaloid biosynthesis from Hyoscyamus niger / 药学学报
Acta Pharmaceutica Sinica ; (12): 172-179, 2017.
Article in Chinese | WPRIM | ID: wpr-779836
ABSTRACT
Tropane alkaloids are anticholinergic drugs widely used clinically. Biosynthesis of tropane alkaloids in planta involves a step of transamination of phenylalanine. Based on the sequenced transcriptomes of lateral roots and leaves of Hyoscyamus niger, we found three annotated aromatic amino acid aminotransferases, which were respectively named HnArAT1, HnArAT2 and HnArAT3. Sequence analysis showed that HnArAT3 had highest similarity with the reported Atropa belladonna AbArAT4, which was involved in tropane alkaloid (TA) to provide the precursor of the phenyllactic acid moiety. Tissue expression pattern analysis indicated that HnArAT3 was specifically expressed in lateral roots, where is the organ synthesizing tropane alkaloids. Then, method of virus induced gene silencing (VIGS) was used to characterize the function of HnArAT3 in H. niger. Gene expression analysis given by real-time quantitative PCR showed that all the transgenic lines had lower expression levels of HnArAT3 than the non-transgenic control, and HPLC analysis of alkaloids demonstrated significant decrease in the contents of hyoscyamine, anisodamine and scopolamine in planta. These results suggested that HnArAT3 was involved in the phenyllactic acid branch of TA biosynthetic pathway. Molecular cloning and functional identification of HnArAT3 laid the foundation for further understanding of TA biosynthesis and metabolic regulation, and also provided a new candidate gene for engineering biosynthetic pathway of tropane alkaloids.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2017 Type: Article