Your browser doesn't support javascript.
loading
Biomechanical properties of calcium silicate/calcium phosphate cement scaffolds with controllable porous structure for bone repair by 3D bioplotting / 医用生物力学
Journal of Medical Biomechanics ; (6): E350-E354, 2015.
Article in Chinese | WPRIM | ID: wpr-804428
ABSTRACT
Objective To design and fabricate novel mesoporous calcium silicate/calcium phosphate cement (MCS/CPC) scaffolds for bone repair and investigate their in vitro biomechanical properties under different external forces. Methods MCS and CPC in certain proportion were mixed to form plotting material, and the composite MCS/CPC scaffolds with pore size of 350 μm and 500 μm were fabricated by 3D bioplotting technique, respectively. Surface topographies of the scaffolds were observed by scanning electron microscope (SEM). The compressive strength and mechanical properties of the scaffolds under dynamic cyclic loads at different frequencies were studied through universal mechanical testing machine and dynamic mechanical analysis instrument. Results MCS/CPC scaffolds with controllable macroporous structures could be fabricated by 3D bioplotting technique. Scaffolds with pore size of 350 μm had higher compressive strength [(9.8±0.39) MPa] and compressive modulus [(132.5±4.3) MPa]. In addition, at the loading frequency of 1-100 Hz, scaffolds with pore size of 350 μm had a higher storage modulus. ConclusionsMCS/CPC scaffolds with pore size of 350 μm fabricated by 3D bioplotting technique possess not only regular pore connectivity and high compressive strength, but also structural stability under dynamic loads, which are promising as novel biomaterials for bone repair.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Medical Biomechanics Year: 2015 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Medical Biomechanics Year: 2015 Type: Article