Your browser doesn't support javascript.
loading
Effects of honokiol on particulate matter 2.5-induced lung injury in asthmatic mice and its mechanisms / 中南大学学报(医学版)
Journal of Central South University(Medical Sciences) ; (12): 718-724, 2018.
Article in Chinese | WPRIM | ID: wpr-813205
ABSTRACT
To explore the therapeutic effect of honokiol on particulate matter 2.5 (PM2.5)-induced lung injury in asthmatic mice and the possible mechanisms.


Methods:

A total of 32 BALB/C mice were randomly divided into four groups a normal saline group, a model group, a PM2.5 group and a honokiol group (n=8 in each group). The asthma mouse model was established by ovalbumin treatment. The mice were treated with physiological saline, ovalbumin, PM2.5 and honokiol, respectively. Lung tissues and serum were collected. The pathological changes of lung tissues were evaluated. The levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were measured and the expressions of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), retinoid-related orphan receptor gamma-t (RORγt) and forkhead box protein 3 (Foxp3) in lung tissues were detected.


Results:

1) The lung tissues of mice in the asthma group showed obvious pathological changes and inflammatory state, suggesting that the asthma model was established successfully. PM2.5 could aggravate the pathological condition of inflammatory injury in lung tissues in asthmatic mice. 2) Compared to the PM2.5 group, the pathological symptoms in the lung tissues were alleviated in the honokiol group and the percentage of inflammatory cells in BALF and the levels of inflammatory cytokines in BALF and serum were significantly reduced (all P<0.05). 3) Compared to the PM2.5 group, the expressions of TLR4, NF-κB (p-p65) and RORγt in lung tissues were significantly decreased, while the expression of Foxp3 was increased; the ratio of RORγt/Foxp3 was also decreased in the honokiol group (all P<0.05).


Conclusion:

Honokiol can resist lung injury induced by PM2.5 in asthmatic mice. These effects are through inhibiting TLR4-NF-κB pathway-mediated inflammatory response or regulating the balance of Th17/Treg cells.
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Pathology / Pharmacology / Asthma / Biphenyl Compounds / Bronchoalveolar Lavage Fluid / Drugs, Chinese Herbal / Random Allocation / Chemistry / Ovalbumin / Cytokines Type of study: Prognostic study Limits: Animals Language: Chinese Journal: Journal of Central South University(Medical Sciences) Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Pathology / Pharmacology / Asthma / Biphenyl Compounds / Bronchoalveolar Lavage Fluid / Drugs, Chinese Herbal / Random Allocation / Chemistry / Ovalbumin / Cytokines Type of study: Prognostic study Limits: Animals Language: Chinese Journal: Journal of Central South University(Medical Sciences) Year: 2018 Type: Article