Your browser doesn't support javascript.
loading
pH responsive docetaxel micelles with improved therapeutic efficacy on mice xenograft tumor / 药学学报
Acta Pharmaceutica Sinica ; (12): 1914-1922, 2020.
Article in Chinese | WPRIM | ID: wpr-825147
ABSTRACT
The non-specific administration of antitumor drugs is the main cause for the side effects of chemotherapy drugs on normal tissues. The application of nanotechnology in the delivery of anti-tumor drugs is one of the important ways to improve the therapeutic effect and to reduce the side effects. The current study aimed to synthesize pH responsive poly (methoxy-ethylene glycol)-poly(lactic acid)-poly-(β-amino ester) (PBAE) triblock copolymers to deliver docetaxel (DTX) and improve the anti-tumor activity of DTX. PBAE was synthesized by ring opening polymerization and Michael addition reaction, its structure and molecular weight was characterized by 1H NMR, the dissociation constant of base (pKb) were determined by acid-base titration method. The critical micelles concentration (CMC) of copolymers was measured by pyrene fluorescence spectroscopy. DTX loaded copolymer micelles were prepared by membrane hydration method. The size and its distribution as well as the stability of micelles were determined by laser light scattering analysis. The drug loading content (DL), entrapment efficiency (EE) and cumulative drug release from micelles were evaluated by high-performance liquid chromatography (HPLC). The sizes of DTX drug-loaded micelles were in the range of 10 to 100 nm with narrow distribution. DL of DTX in PBAE1 and PBAE2 micelles was (5.3 ± 0.10) % and (4.9 ± 0.05) %, respectively, with EE was (93.8 ± 1.70) % and (87.2 ± 4.10) %, respectively. The drug-loaded micelles showed pH sensitive drug release properties under weak acidic conditions, which showed potential drug release of DTX under mild acidic tumor environment. A mouse Lewis lung carcinoma model was established to evaluate the therapeutic efficacy of micellar DTX formulations. Significant inhibitory effect of the nanodrugs was observed with DTX dosages of 10 and 20 mg·kg-1, respectively. Moreover, the pH responsive PBAE1-DTX micellar drug exhibited stronger therapeutic efficacy on mice xenograft tumor, as compared with the non pH sensitive micellar drug (PELA-DTX) and free DTX. All animal experiments were performed according to the animal ethical standards and approved by the Animal Experiments and Ethical Committee of China Academy of Chinese Medical Sciences (No. 2017090110). The in vivo anti-tumor activity studies showed that the tumor volume growth rates of mice in different drug-administered groups were PBAE1-DTX 20 mg·kg-1 < PBAE1-DTX 10 mg·kg-1 < PELA-DTX 10 mg·kg-1 < DTX 10 mg·kg-1 < normal saline, with the PBAE1-DTX group as the most potent group for tumor inhibition. The current pH sensitive DTX nano-micelles showed high potential in further studies to promote the application of nano DTX formulations for tumor treatment.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Practice guideline Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Practice guideline Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2020 Type: Article