Your browser doesn't support javascript.
loading
Comparison of soil hydraulic properties in wild and cultivated areas of Notopterygium incisum / 中国中药杂志
China Journal of Chinese Materia Medica ; (24): 3805-3811, 2020.
Article in Chinese | WPRIM | ID: wpr-828382
ABSTRACT
To clarify the difference of soil moisture characteristics between mixed broad leaf-conifer forest soil and artificial cultivation of Notopterygium incisum, the HYPROP system and the dew point potential meter were used to determine soil water retention curves(SWRC) for samples of two horizons(i.e. 2-7 cm, 10-15 cm). The basic physical and chemical properties of soil and its water characteristic parameters were also determined. The result showed as fllows①The bulk density of mixed coniferous-broad leaf forest soil was between 0.33 and 0.52 g·cm~(-3), significantly lower than the corresponding value of field soil(1.01-1.18 g·cm~(-3))(P<0.05), While the organic matter content was significantly higher than the corresponding value of field soil(P<0.05). ②The saturated water content(θ_s), field water holding capacity(θ_(FC)) and Water that can be effectively utilized by plants(θ_(PAC)) of mixed coniferous-broadleaved forest soil were significantly higher than the corresponding value of field soil(P<0.05), while the retained water content(θ_r) value that cannot be effectively utilized by plants was significantly lower than that of field soil(P<0.05). ③The values of structural porosity(0.13-0.24 cm~3·cm~(-3)) and Matrix porosity(0.34-0.44 cm~3·cm~(-3)) of mixed coniferous-broadleaved forest soil were higher than the corresponding values of field soil. Therefore, with low bulk density and high content of organic matter, mixed coniferous-broadleaved forest soil can store more water in soil in the form of effective water to meet the needs of plants for water, thus possibly forming high quality medicinal materials of Notopterygii Rhizoma et Radix. In conclusion, the results of this study can provide theoretical basis guidance for soil structure improvement and water management to form high quality medicinal materials in the artificial cultivation of N. incisum.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Soil / Water / Forests / China / Apiaceae / Tracheophyta Country/Region as subject: Asia Language: Chinese Journal: China Journal of Chinese Materia Medica Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Soil / Water / Forests / China / Apiaceae / Tracheophyta Country/Region as subject: Asia Language: Chinese Journal: China Journal of Chinese Materia Medica Year: 2020 Type: Article