Your browser doesn't support javascript.
loading
Effects of sustained-release atorvastatin calcium nanofiber scaffold on cell adhesion and proliferation / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 4492-4497, 2020.
Article in Chinese | WPRIM | ID: wpr-847305
ABSTRACT

BACKGROUND:

Statins plays a significant role in regulating blood lipids, treating and preventing cardiovascular and cerebrovascular diseases. Studies have shown that statins has certain potential in promoting bone formation and treating osteoporosis.

OBJECTIVE:

To prepare the drug release scaffolds for the sustained release of atorvastatin calcium, which consist of bovine serum albumin microspheres and polycaprolactone electrostatic spinning fibers, and to investigate the effects of the drug sustained release scaffolds on osteoblast adhesion and proliferation.

METHODS:

Bovine serum albumin microspheres containing atorvastatin calcium were prepared by desolvation. A layer of chitosan was coated on the surface of the bovine serum albumin microspheres by electrostatic adsorption, which can increase the stability of the microspheres. Bovine serum albumin microspheres were purified and lyophilized for later use. The lyophilized powder of microspheres was dissolved in organic solvent. An appropriate amount of hydroxyapatite was added in the solvent. The nanofiber scaffolds for sustained release of atorvastatin calcium were prepared via electrospinning. The micromorphology, degradation performance, and sustained-release performance of the nanofiber scaffolds were characterized. The prepared nanofiber scaffolds for sustained-release of atorvastatin calcium were co-cultured with MC3T3-E1 cells to observe cell adhesion and proliferation. RESULTS AND

CONCLUSION:

(1) Transmission electron microscopy revealed that the shape of the bovine serum albumin nanospheres was regular and circular. Bovine serum albumin nanospheres were discarded in the electrostatic spinning fibers. The basic morphology of the microspheres was retained. (2) Scanning electron microscopy revealed that the nanofibers used for preparation of nanofiber scaffolds for sustained-release of atorvastatin calcium were composed of filaments with uniform diameters and continuous smooth surface. Filaments were intertwined to form a network structure. (3) The nanofiber scaffolds exhibited the fastest degradation in the first month. The material was incomplete when degraded for 3 months. (4) The nanofiber scaffolds had the ability to slow down the release of drugs. The effect could last for more than 1 month. The overall process of drug release was similar to the zero-order kinetic process. (5) The nanofiber scaffolds for sustained-release of atorvastatin calcium can promote MC3T3-E1 cell adhesion and proliferation. (6) These results suggest that the nanofiber scaffolds for sustained-release of atorvastatin calcium have good biocompatibility and can promote the adhesion and proliferation of osteoblasts.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2020 Type: Article