Your browser doesn't support javascript.
loading
Biomechanical characteristics of children’s different strike patterns during running / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 3209-3216, 2020.
Article in Chinese | WPRIM | ID: wpr-847471
ABSTRACT

BACKGROUND:

Foot strike patterns in adults during running have always been the focus of worldwide research, and the strike patterns of children are also something that cannot be ignored.

OBJECTIVE:

Using biomechanical methods to explore the differences in kinematics and kinetics of children in different strike patterns during the running process, and to provide a scientific basis for children’s correct way of running.

METHODS:

Seventy-four children were randomly selected from a public kindergarten in Haidian District, Beijing, and were divided into 3-year-old group, 4-year-old group and 5-year-old group. The kinematics and kinetics data of enrolled children in different strike patterns during running were acquired simultaneously using the BTS infrared motion capture system, the Kistler three-dimensional force table and the VIXTA video analysis system. The muscle strength index of the lower limbs was calculated using the Anybody 5.2 simulation modeling software. Before participation in the trial, children’s parents were fully informed of study protocol and signed the informed consent form. The trial protocol met the relevant ethical requirements of Beijing Normal University. RESULTS AND

CONCLUSION:

(1) In the 3-year-old group, the proportion of mid foot strike (MFS) was the highest, and the proportion of fore foot strike (FFS) was the lowest. In the 5-year-old group, the proportion of MFS was the lowest, and the proportion of FFS was the highest. The rear foot strike (RFS) extension time was longer than that of FFS (P < 0.01) and MFS (P < 0.05). (2) At the moment of landing, the flexion angle of FFS was greater than that of RFS (P < 0.01) and MFS (P < 0.05), and the flexion angle of MFS was greater than that of RFS (P < 0.05). The hip adduction-abduction angle of RFS was greater than that of FFS (P < 0.01) and MFS (P < 0.05). The maximum hip abduction angle of RFS was greater than that of FFS (P < 0.01) and MFS (P < 0.01). The amount of joint changes in the RFS hip adduction and abduction was greater than that of FFS (P < 0.01) and MFS (P < 0.05). The minimum flexion and extension of RFS was greater than that of FFS (P < 0.05). The maximal hip adduction-abduction angular velocity of RFS was greater than that of FFS (P < 0.05), and the maximal knee adduction-abduction angular velocity of RFS was greater than that of FFS (P < 0.01) and MFS (P < 0.05). (3) The muscle strength of the short bones of the tibia, the long tibia and the third metatarsal muscle of FFS and MFS was greater than that of RFS (P < 0.05). The bundle muscle strength of the medial femoral muscle, the lateral femoral muscle bundle, the lateral femoral muscle bundle, the medial femoral muscle bundle, the medial femoral muscle bundle, and the medial femoral muscle of RFS were greater than that of FFS (P < 0.01) and MFS (P < 0.05). (4) In the 3-6 years old, children often run in the heel or full-foot landing mode to meet their stability during the running process. As the age increases, the running pattern with the forefoot landing gradually appears. To keep the movement steady, RFS can trigger more hip and knee frontal motions, FFS and MFS can offer more muscle strength on the anterior and posterior sides of the calf, while RFS can offer more muscle strength on the anterior side of the thigh.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2020 Type: Article