Your browser doesn't support javascript.
loading
Role of osteogenic signaling pathway in non-traumatic femoral head necrosis / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 2235-2242, 2021.
Article in Chinese | WPRIM | ID: wpr-848022
ABSTRACT

BACKGROUND:

In recent years, the incidence of non-traumatic femoral head necrosis has increased gradually. It has the characteristics of insidious onset, rapid development of disease and high disability rate, bringing a great burden to patients, their families and society. Confirming its pathogenesis is of great significance for the early effective treatment of non-traumatic femoral head necrosis.

OBJECTIVE:

To review the relevant literature worldwide and to summarize the research progress of osteogenic signaling pathways in the pathogenesis of non-traumatic femoral head necrosis.

METHODS:

PubMed, Embase, Medline, CNKI, VIP and WanFang databases were retrieved with the keywords of “non-traumatic osteonecrosis of femoral head, osteogenesis, signaling pathways, pathogenesis, Wnt/β-catenin, PPARy, TGF-β/Smad, PI3K/AKT, MAPK, Notch” in English and Chinese, respectively. The articles concerning mechanism and application of osteogenic signaling pathways associated with avascular necrosis of the femoral head were included. RESULTS AND

CONCLUSION:

Recently, the role of osteogenic signaling pathways in non-traumatic femoral head necrosis has received increasing attentions. The abnormal differentiation of bone marrow mesenchymal stem cells in the development of non-traumatic femoral head necrosis has also become an issue of concern. Abnormal differentiation of bone marrow mesenchymal stem cells, inhibition of osteogenic differentiation, increased bone destruction, and imbalance of bone metabolism may be the main cause of non-traumatic femoral head necrosis, and Wnt/β-catenin, PPARy, TGF-β/Smad, PI3K/AKT, MAPK, Notch and other osteogenic signaling pathways may be a viable approach to intervention for non-traumatic femoral head necrosis. Although a large number of in vitro and animal studies have confirmed that osteogenic signaling pathway may have the potential to regulate bone marrow mesenchymal stem cell differentiation and reverse femoral head necrosis, its specific mechanism of action remains unclear and little is reported on its clinical applications. Therefore, exploring the mechanism of signaling pathways and accelerating its clinical use are the directions of the future research.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2021 Type: Article