Your browser doesn't support javascript.
loading
Effect of iridoid glycosides of Scrophulariae Radix on endoplasmic reticulum stress induced by oxygen glucose deprivation and reperfusion in primary cortical neurons / 中草药
Chinese Traditional and Herbal Drugs ; (24): 2934-2940, 2019.
Article in Chinese | WPRIM | ID: wpr-851065
ABSTRACT

Objective:

To investigate the effects and mechanisms of iridoid glycosides of Scrophulariae Radix (IGRS) via endoplasmic reticulum stress-mediated apoptosis pathway on the primary cortical neurons induced by oxygen glucose deprivation/reperfusion (OGD/R).

Methods:

Newborn SD rats were performed primary cortical neurons culture. And the primary cortical neurons were pretreated with IGRS (50, 100, and 200 μg/mL) for 24 h, and the in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R) was applied. The neurons purity and morphology were observed under inverted microscope, the cell viability was detected by MTT assay; the intracellular lactate dehydrogenase (LDH) level and superoxide dismutase (SOD) activity were detected by commercial kit. The apoptotic rate was detected by flow cytometry. The expression of C/EBP homologous protein (CHOP), glucose-regulated protein-78 (GRP78) and Caspase-12 protein were detected by western blotting.

Results:

The cultured primary cortical neurons were plump with high purity in good condition. Compared with the control group, the primary cortical neurons were retracted and rounded after OGD/R treatment, and the surface of the neurons became rough; The cell viability and SOD activity were significantly decreased; The LDH level and apoptotic rate were evidently increased; The expression of CHOP, Caspase-12, and GRP78 were significantly increased. Compared with the model group, IGRS could relieve neurons damage, increase cell viability and SOD activity, decrease LDH level and apoptotic rate, and down-regulate the expression of CHOP, Caspase-12, and GRP78.

Conclusion:

IGRS can antagonize the neuronal damage induced by OGD/R in primary cortical neurons, and its mechanism is related to the inhibition of endoplasmic reticulum stress-mediated apoptosis.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Traditional and Herbal Drugs Year: 2019 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Traditional and Herbal Drugs Year: 2019 Type: Article