Your browser doesn't support javascript.
loading
Structural control and characterization of hierarchically structured fibrous scaffolds / 中国修复重建外科杂志
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 479-485, 2019.
Article in Chinese | WPRIM | ID: wpr-856578
ABSTRACT

Objective:

To prepare hierarchically structured fibrous scaffolds with different morphologies, and to explore the additional dimensionality for tuning the physicochemical properties of the scaffolds and the effect of their hemocompatibility and cytocompatibility.

Methods:

Electrospinning poly (e-caprolactone) (PCL)/polyvinylpyrrolidone (PVP) bicomponent fibers (PCL∶PVP mass ratios were 8∶2 and 5∶5 respectively), and the surface porous fibrous scaffolds were prepared by extracting PVP components. The scaffolds were labeled PCL-P8 and PCL-P5 respectively according to the mass ratio of polymer. In addition, shish-kebab (SK) structured scaffolds with different kebab sizes were created by solution incubation method, which use electrospun PCL fibers as shish while PCL chains in solution crystallizes on the fiber surface. The PCL fibrous scaffolds with smooth surface was established as control group. The hierarchically structured fibrous scaffolds were characterized by field emission scanning electron microspore, water contact angle tests, and differential scanning calorimeter (DSC) experiments. The venous blood of New Zealand white rabbits was taken and hemolysis and coagulation tests were used to characterize the blood compatibility of the scaffolds. The proliferation of the pig iliac artery endothelial cell (PIEC) on the scaffolds was detected by cell counting kit 8 (CCK-8) method, and the biocompatibility of the scaffolds was evaluated.

Results:

Field emission scanning electron microscopy showed that porous morphology appeared on the surface of PCL/PVP bicomponent fibers after extracting PVP. In addition, SK structure with periodic arrangement was successfully prepared by solution induction, and the longer the crystallization time, the larger the lamellar size and periodic distance. The contact angle and DSC measurements showed that when compared with smooth PCL fiber scaffolds, the crystallinity of PCL surface porous fibrous scaffolds and PCL-SK fibrous scaffolds increased, while the hydrophobicity of PCL-SK fibrous scaffolds increased, but the hydrophobicity of PCL porous scaffolds did not change significantly. The hemolysis test showed that the hemolysis rate of PCL surface porous fibrous scaffolds and PCL-SK fibrous scaffolds was higher than that of PCL fibrous scaffolds. According to American Society of Materials and Tests (ASTM) F756-08 standard, all scaffolds were non-hemolytic materials and were suitable for blood contact materials. Coagulation test showed that the coagulation index of PCL surface porous fibrous scaffolds and PCL-SK fibrous scaffolds was higher than that of PCL fibrous scaffolds at 5 and 10 minutes of culture. CCK-8 assay showed that both hierarchically structured fibrous scaffolds were more conducive to PIEC proliferation than PCL fibrous scaffold.

Conclusion:

Based on electrospinning technology, solution-induced and blend phase separation methods can be used to construct multi-scale fiber scaffolds with different morphologies, which can not only regulate the surface physicochemical properties of the scaffolds, but also have good blood compatibility and biocompatibility. The hierarchically structured fibrous scaffolds have high application potential in the field of tissue engineering.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Reparative and Reconstructive Surgery Year: 2019 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Reparative and Reconstructive Surgery Year: 2019 Type: Article