Your browser doesn't support javascript.
loading
Changes of microRNA-153 expression and its regulatory role in arsenic-induced hepatocytes apoptosis / 中华地方病学杂志
Chinese Journal of Endemiology ; (12): 703-709, 2020.
Article in Chinese | WPRIM | ID: wpr-866204
ABSTRACT

Objective:

To investigate the changes of microRNA-153 (miR-153) expression and the mechanism of regulating histone H3 lysine 4 (H3K4) methyltransferase (SET7/9) and histone H3K4 methylation (H3K4me1) in the process of arsenic-induced endoplasmic reticulum stress-related hepatocytes apoptosis.

Methods:

Human normal hepatocytes (L-02 cells) were cultured in vitro and divided into control, arsenic treatment, arsenic + negative transfection, arsenic + miR-153 up-regulation and arsenic+ miR-153 down-regulation groups according to different treatment methods. Arsenic+ negative transfection, arsenic+ miR-153 up-regulation and arsenic+ miR-153 down-regulation groups were transfected with transfection plasmid and transfection reagent according to a certain proportion (3 μg 8 μl). After 24 h, arsenic treatment, arsenic+ negative transfection, arsenic+ miR-153 up-regulation and arsenic+ miR-153 down-regulation groups were all treated with 100 μmol/L sodium arsenite (NaAsO 2) as the final concentration for 24 h. The control group was treated with phosphate buffer solution (PBS) of the same volume as NaAsO 2 for 24 h. The expression of miR-153 was detected by real-time quantitative polymerase chain reaction (RT-qPCR); cell apoptosis and cell cycle were detected by flow cytometry; real-time cell dynamic analyzer (RTCA) was used to detect cell proliferation; Western blotting was used to detect the expression of endoplasmic reticulum marker proteins glucose regulatory protein 78 (GRP78), SET7/9 and H3K4me1.

Results:

The expression levels of miR-153 in each group were significantly different ( F = 10.73, P < 0.05). Compared with the control group [(41.10 ± 6.08)%], the expression level of miR-153 in arsenic treatment group [(4.35 ± 0.20)%] was significantly decreased ( P < 0.05); compared with the arsenic+ negative transfection group [(10.00 ± 2.40)%], the expression level of miR-153 in arsenic+ miR-153 up-regulation group [(157.70 ± 42.70)%] was significantly increased ( P < 0.05), and that in arsenic+ miR-153 down-regulation group [(4.20 ± 0.28)%] was significantly decreased ( P < 0.05). There were significant differences in the total cell apoptosis rate and G1 phase cell proportion among the five groups ( F = 29.69, 104.32, P < 0.05). Compared with the control group, the total cell apoptosis rates and G1 phase cell proportions in arsenic treatment, arsenic+ miR-153 up-regulation and arsenic+ miR-153 down-regulation groups were significantly increased ( P < 0.05); compared with the arsenic+ negative transfection group, the total cell apoptosis rate and G1 phase cell proportion in arsenic+ miR-153 up-regulation group were significantly decreased ( P < 0.05), and those in arsenic+ miR-153 down-regulation group were significantly increased ( P < 0.05). The difference of cell proliferation rate in each group was statistically significant ( F = 799.35, P < 0.05). Compared with the control group, the cell proliferation rates in arsenic treatment, arsenic+ miR-153 up-regulation and arsenic+ miR-153 down-regulation groups were significantly decreased ( P < 0.05); compared with the arsenic+ negative transfection group, the cell proliferation rate in arsenic+ miR-153 up-regulation group was significantly increased ( P < 0.05), and that in arsenic+ miR-153 down-regulation group was significantly decreased ( P < 0.05). The protein expression levels of SET7/9, GRP78 and H3K4me1 in each group were significantly different ( F = 78.52, 52.13, 54.32, P < 0.05). Compared with the control group, the protein expression levels of SET7/9, GRP78 and H3K4me1 in arsenic treatment group were significantly increased ( P < 0.05); compared with the arsenic+ negative transfection group, the protein expression levels of SET7/9, GRP78 and H3K4me1 in arsenic+ miR-153 up-regulation group were significantly decreased ( P < 0.05), and those in arsenic + miR-153 down-regulation group were significantly increased ( P < 0.05).

Conclusion:

miR-153 plays an important role in arsenic-induced endoplasmic reticulum stress-related hepatocytes apoptosis, the expression and regulation are related to the changes of SET7/9 and H3K4me1 levels.
Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Endemiology Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Endemiology Year: 2020 Type: Article