Your browser doesn't support javascript.
loading
Mechanism of Jiangzhihugan capsule in treatment of fatty liver based on network pharmacology / 药学实践杂志
Journal of Pharmaceutical Practice ; (6): 232-239, 2021.
Article in Chinese | WPRIM | ID: wpr-876855
ABSTRACT
Objective To explore the potential mechanism of Jiangzhihugan capsule (JZHG) for fatty liver (FL), and to provide a theoretical guideline for the clinical application of JZHG. Methods TCMSP and TCMID databases were used to search for the active components and targets of JZHG. GeneCards and OMIM database were used to search the FL related targets. The intersection method was used to identify the common targets of JZHG and FL. Cytoscape software was applied for the construction of active compounds-targets network map. Protein-protein interaction network was constructed by STRING software. Gene ontology functional enrichment analysis and KEGG pathway enrichment analysis were conducted with Bioconductor database and R software. Results 46 potential active components were screened out from JZHG. 7406 targets were retrieved through GeneCard and OMIM database. 118 genes were obtained from the intersection of component-target and disease-target. These genes were mainly involved with the response to oxidative stress, apoptosis, inflammatory response, hormone resistance and other biological processes. The mechanism was related to PI3K-Akt signaling pathway, human cytomegalovirus infection, microRNAs in cancer, etc. Conclusion The mechanism of active ingredients for FL in JZHG may be due to improving lipid metabolism and reducing liver fat accumulation through anti-oxidative stress and anti-inflammatory effects.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Practice guideline Language: Chinese Journal: Journal of Pharmaceutical Practice Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Practice guideline Language: Chinese Journal: Journal of Pharmaceutical Practice Year: 2021 Type: Article