Your browser doesn't support javascript.
loading
Regulatory effect of metabolic glutamate receptor 1 on maltolate aluminum-induced synaptic plasticity in rats / 中国职业医学
China Occupational Medicine ; (6): 24-29, 2020.
Article in Chinese | WPRIM | ID: wpr-881859
ABSTRACT

OBJECTIVE:

To observe the effect of maltolate aluminum on synaptic plasticity in the hippocampus of rats and to explore the regulatory effect and mechanism of metabotropic glutamate receptor 1(mGluR1).

METHODS:

Specific pathogen free healthy adult male SD rats were randomly divided into control group, aluminum group, aluminum agonist group and aluminum antagonist group, 8 rats in each group. The rats in the control group received no treatment; the rats in aluminum group were injected with 5 μL 10 mmol/L maltolate aluminum solution into the lateral ventricle; the rats in aluminum agonists and aluminum antagonist group were injected with 3 μL 10 mmol/L maltolate aluminum solution plus 2 μL 0.1 μmol/L mGluR1 agonist or 2 μL 0.2 μmol/L mGluR1 antagonists into the lateral ventricle, respectively.Maltolate aluminum solution was injected every 2 days and continued for 10 days. After maltolate aluminum exposure, the amplitudes of long-term potentiation(LTP) in hippocampal CA1 region of rats were measured, and the relative expression levels of mRNA and protein of mGluR1, N-methyl-D-aspartate receptor(NMDAR1) and protein kinase C(PKC) in hippocampus tissue of rats were detected by real-time fluorescence quantitative polymerase chain reaction and Western blotting.

RESULTS:

The amplitude of LTP in hippocampal CA1 region in aluminum group and aluminum agonist group was lower than that in the control group and the aluminum antagonist group(P<0.05). Compared with the control group, the relative expression of mGluR1 mRNA and protein in the aluminum group increased, the relative expression of PKC and NMDAR1 mRNA and protein in the aluminum group decreased(P<0.05). Compared with the aluminum group, the relative expression of mGluR1 mRNA and protein in the aluminum agonist group increased, while the NMDAR1 mRNA decreased(P<0.05); the relative expression of mGluR1 mRNA and protein in the aluminum antagonist group decreased, while the NMDAR1 mRNA and protein increased(P<0.05). Compared with the aluminum agonist group, the relative expression of mGluR1 mRNA and protein decreased, while the NMDAR1 mRNA and protein increased in the aluminum antagonist group(P<0.05). The relative expression level of PKC mRNA and protein in aluminum agonist group and aluminum antagonist group was not statistically significant(P>0.05), and there was no statistical significance in these two groups compared with control group and aluminum group(P>0.05).

CONCLUSION:

Maltolate aluminum exposure can inhibit synaptic plasticity by inhibiting LTP in hippocampus of rats, and the mechanism may be related to the regulation of NMDAR1 expression by mGluR1.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: China Occupational Medicine Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: China Occupational Medicine Year: 2020 Type: Article