Your browser doesn't support javascript.
loading
Sub-chronic aluminum exposure inhibits synaptic plasticity in hippocampus of rats via inhibiting PI3K/AKT/mTOR signaling pathway / 中国职业医学
China Occupational Medicine ; (6): 141-146, 2020.
Article in Chinese | WPRIM | ID: wpr-881876
ABSTRACT

OBJECTIVE:

To study the effect of sub-chronic aluminum exposure on synaptic plasticity in the hippocampus of rats and to explore the mechanism of phosphatidylinositol 3 kinase(PI3 K)/protein kinase B(AKT)/rapamycin target protein(mTOR) signaling pathway.

METHODS:

Specific pathogen free adult healthy male SD rats were randomly divided into control group and low-, medium-and high-dose groups based on body weight, with 10 rats in each group. Rats were treated with maltol aluminum solution at the concentrations of 0, 10, 20 and 40 μmol/kg body weight by intraperitoneal injection, 5 days per week for 3 months. After the exposure, rats were weighed. Morris water maze was used to test the learning and memory ability, and the two-electrode binding technique was used to record the long-term potentiation(LTP) amplitude in the hippocampus CA1 area of rats. The protein expression of PI3 K, AKT and mTOR in rat hippocampus tissues was detected by Western blot.

RESULTS:

After the exposure, the body weights of rats in the medium-and high-dose groups were lower than that of the control group(P<0.05). The results of the positioning navigation experiment showed that the escape latencies of the rats in the medium-and high-dose groups were shorter than that in the control group during the 2 nd to 4 th days of the experiment(P<0.05). The results of space exploration experiments showed that there was no statistical difference on the target quadrant retention time and the number of crossing the platform among the 4 groups(P>0.05). At 1, 30, and 60 min after high-frequency stimulation, the LTP amplitudes in the hippocampus CA1 area of the aluminum-treated groups were lower than that of the control group at the same time point(P<0.05), and the LTP amplitudes of hippocampus CA1 area of rats decreased with the increase of maltol aluminum exposure dose(P<0.01). The relative expression of PI3 K, AKT and mTOR protein in the hippocampus tissues of the aluminum-treated groups was lower than that of the control group(P<0.05), and the relative expression of the above three proteins decreased with the increase of the maltol aluminum exposure dose(P <0.01).

CONCLUSION:

Sub-chronic aluminum exposure could lead to dose-dependent inhibition of hippocampus synaptic plasticity in rats, thereby impairing the spatial learning ability of rats. This process may be related to inhibition of PI3 K/AKT/mTOR signaling pathway by aluminum.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: China Occupational Medicine Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: China Occupational Medicine Year: 2020 Type: Article