Your browser doesn't support javascript.
loading
Ultrastructural Changes in Skeletal Muscle of Infants with Mitochondrial Respiratory Chain Complex I Defects
Journal of Clinical Neurology ; : 359-365, 2017.
Article in English | WPRIM | ID: wpr-88556
ABSTRACT
BACKGROUND AND

PURPOSE:

The pathogenesis of mitochondrial disease (MD) involves the disruption of cellular energy metabolism, which results from defects in the mitochondrial respiratory chain complex (MRC). We investigated whether infants with MRC I defects showed ultrastructural changes in skeletal muscle.

METHODS:

Twelve infants were enrolled in this study. They were initially evaluated for unexplained neurodegenerative symptoms, myopathies, or other progressive multiorgan involvement, and underwent muscle biopsies when MD was suspected. Muscle tissue samples were subjected to biochemical enzyme assays and observation by transmission electron microscopy. We compared and analyzed the ultrastructure of skeletal muscle tissues obtained from patients with and without MRC I defects.

RESULTS:

Biochemical enzyme assays confirmed the presence of MRC I defects in 7 of the 12 patients. Larger mitochondria, lipid droplets, and fused structures between the outer mitochondrial membrane and lipid droplets were observed in the skeletal muscles of patients with MRC I defects.

CONCLUSIONS:

Mitochondrial functional defects in MRC I disrupt certain activities related to adenosine triphosphate synthesis that produce changes in the skeletal muscle. The ultrastructural changes observed in the infants in this study might serve as unique markers for the detection of MD.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Biopsy / Adenosine Triphosphate / Muscle, Skeletal / Mitochondrial Diseases / Microscopy, Electron, Transmission / Electron Transport / Energy Metabolism / Mitochondrial Membranes / Enzyme Assays / Lipid Droplets Limits: Humans / Infant Language: English Journal: Journal of Clinical Neurology Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Biopsy / Adenosine Triphosphate / Muscle, Skeletal / Mitochondrial Diseases / Microscopy, Electron, Transmission / Electron Transport / Energy Metabolism / Mitochondrial Membranes / Enzyme Assays / Lipid Droplets Limits: Humans / Infant Language: English Journal: Journal of Clinical Neurology Year: 2017 Type: Article