Your browser doesn't support javascript.
loading
Design and synthesis of tetrazine bioorthogonal fluorogenic probes / 药学学报
Acta Pharmaceutica Sinica ; (12): 1086-1095, 2021.
Article in Chinese | WPRIM | ID: wpr-886992
ABSTRACT
Bioorthogonal fluorogenic probes are becoming an ideal tool for live-cell fluorescence imaging. With the tetrazine bioorthogonal fluorogenic probe that displays fluorescence enhancement, the tetrazine plays the dual-role of a bioorthogonal reaction unit and the fluorescence quenching unit. The "off" and "on" states of the fluorescence probe are mainly controlled through inverse electron demand Diels-Alder (IEDDA) bioorthogonal reaction. We designed a series of turn-on tetrazine fluorescent probes with Donor-π-Acceptor (D-π-A) structure to achieve a high signal-to-noise ratio and specificity of fluorescence imaging. This series of probes reacted with the dienophile bicyclononyne, and then generated pyridazine structure in-situ that acted as an electron acceptor, resulting in a new D-π-A effect of fluorescent dyes, turning on the intramolecular charge transfer (ICT) effect. By adjusting the electron-donating groups and the degree of conjugation, tunable fluorescence spectra between 400-647 nm with fluorescence turn-on enhanced up to 500-fold have been achieved. This research lays the foundation for the further optimization of tetrazine bioorthogonal fluorescent probes and their applications in molecular imaging and biomedical fields.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article