Your browser doesn't support javascript.
loading
Cloning and expression analysis of RcUDPGTs genes in Tibetan Rhodiola crenulata / 药学学报
Acta Pharmaceutica Sinica ; (12): 2015-2024, 2021.
Article in Chinese | WPRIM | ID: wpr-887005
ABSTRACT
UDP glucosyltransferase (UDPGT) catalyzes the synthesis of secondary metabolites and plant hormones to regulate plant growth and development, pathogen defense and environmental adaptability. In this study 18 members of the RcUDPGT gene family were cloned from Tibetan Rhodiola crenulata and analyzed using bioinformatics. The tissue-specific expression, abiotic stresses and plant hormones (abscisic acid, auxin, methyl jasmonate) induced expression patterns were identified by real-time quantitative PCR. The bait vector of RcUDPGT (JX228125.1) was constructed to select interacting proteins from an Arabidopsis yeast library. The results of the bioinformatics analysis revealed that RcUDPGT nucleotide sequences were about 1 400 bp and encoded 452-498 amino acids. In the primary protein sequences, C-terminal sequences were more conserved compared with N-terminal regions, which held a PSPG (plant secondary product glycosyltransferase) domain. In the tertiary structures, RcUDPGTs contained a UDP sugar donor recognition binding site. In addition, all genes had multiple phosphorylation sites. The results of qRT-PCR showed that RcUDPGTs genes were expressed in root, stem and leaf. The expression levels were regulated by low temperature/ultraviolet light and various plant hormones (ABA, IAA, MeJA), but the expression patterns were quite different among them. For example, RcUDPGT6, RcUDPGT11, and RcUDPGT17 had the highest expression in leaves and were induced by all three hormones, suggesting that the functions of these genes might be to respond to environmental changes. RcUDPGT9, RcUDPGT10, RcUDPGT14 were most abundantly expressed in roots and were significantly induced by ABA and MeJA hormones, indicating that these genes may be involved in the synthesis and accumulation of salidroside. Yeast two-hybrid results showed that RcUDPGT did not exhibit autoactivation and cell toxicity, and two significant interactional genes were identified, AtKCR1 (AT1G67730.1) and AtSNL4 (AT1G70060). The AtKCR1 gene encodes a β-ketoacyl reductase (KCR) involved in synthesis of very long chain fatty acids. The AtSNL4 gene encodes a homolog of the transcriptional repressor SIN3, which could participate in the ABA hormone signaling pathway and enhance the transcriptional repression of AP2/EREBP class factors in Arabidopsis. These results suggest that the accumulation of the secondary metabolite salidroside in Rhodiola crenulata might be affected by several regulatory mechanisms. The above results may lay the foundation for understanding the adaptive mechanism of Rhodiola crenulata in a high altitude environment and stimulate an in-depth study of the synthesis and accumulation of secondary metabolites in this species.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article