Your browser doesn't support javascript.
loading
Structure and identification of immune fragments of acid-degraded oligosaccharides from active Astragalus polysaccharides APS-Ⅱ / 药学学报
Acta Pharmaceutica Sinica ; (12): 2266-2275, 2021.
Article in Chinese | WPRIM | ID: wpr-887054
ABSTRACT
We previously reported that active Astragalus polysaccharides APS-Ⅱ generate strong immune activity. Here we establish the optimal method for APS-II acid degradation. After preliminary structural studies and separation and preparation of the degradation products, the oligosaccharide active center with the strongest immune activity was identified by in vitro immune cell culture experiments. The optimum acid degradation conditions for APS-II were determined by a single factor experiment and an orthogonal experiment. Astragalus oligosaccharides prepared under the optimal conditions were subjected to structural analysis by hydrophilic interaction chromatography - electrospray ionization source - high resolution time-of-flight mass spectrometry. The products were separated and oligosaccharide fragments with different degrees of polymerization were isolated by preparative purification chromatography. Finally, fragments of the immunologically active centers were identified by in vitro immune cell cultures from multiple perspectives. The results show that the optimal acid hydrolysis conditions for APS-Ⅱ are hydrolysis temperature 80 ℃, trifluoroacetic acid concentration 1.0 mol·L-1, hydrolysis time 1 h. The degradation conditions have good repeatability. The degradation product is a six-carbon aldehyde glycan structure with the main chain 1→4 connected. The immune activity screening experiment for six oligosaccharide fragments showed that larger molecular weight oligosaccharides have stronger immune-promoting effects. It is speculated that the immunologically active center of Astragalus oligosaccharide is located in the sugar chain of DP9-DP19. The animal welfare and the experimental process in this study follow the requirements of the Animal Ethics Committee of Shanxi University. This result suggests a foundation for the structural characterization and structure-activity relationship research of Astragalus oligosaccharides, and may promote the development of Astragalus oligosaccharide drugs.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Diagnostic study Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Diagnostic study Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article