Your browser doesn't support javascript.
loading
Effect of molecular weight of polyethylene glycol on pharmacokinetics of baicalin / 药学学报
Acta Pharmaceutica Sinica ; (12): 1416-1423, 2021.
Article in Chinese | WPRIM | ID: wpr-887064
ABSTRACT
The aim of this study was to investigate the effects of polyethylene glycol (PEGs) with different molecular weights (MW 400, 1 000, 4 000) on the pharmacokinetics of baicalin, and preliminarily analyze its mechanism. Rats were gavaged with baicalin (168 mg·kg-1) + aqueous solution or baicalin + PEGs solution and plasma samples were collected from 0 to 24 h after administration. The concentration of baicalin and its main metabolite baicalein 6-O-β-D-glucuronide (B6G) were determined at different time points by UPLC-MS/MS, and the pharmacokinetic parameters were calculated with DAS 3.0 software. The results showed that PEGs with different molecular weights could effectively increase the AUC0-t of baicalin and B6G, increase the Cmax, and prolong the t1/2, effectively increasing the concentration of baicalin and B6G in vivo. The mechanism may be by promoting the activity of uridine diphosphate glucuronosyl-transferases 1A8 (UGT1A8) and 1A9 (UGT1A9), thereby increasing the transformation rate of baicalin and B6G. The rate of metabolism of B6G was faster than that of baicalin, suggesting that PEGs had a higher affinity for UGT1A8, and PEG400 had the most significant effect. The purpose of this study was to provide a basis for the clinical safe use of baicalin and other flavonoids and the design of new dosage forms with the participation of PEGs. The animal experiment protocol in this study was approved by the Experimental Animal Ethics Committee of Guizhou Medical University.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Practice guideline Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Practice guideline Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article