Your browser doesn't support javascript.
loading
Degrading enzyme modified molecularly imprinted xerogel for selective adsorption and degradation of dopamine / 药学学报
Acta Pharmaceutica Sinica ; (12): 1470-1477, 2021.
Article in Chinese | WPRIM | ID: wpr-887080
ABSTRACT
In recent years, the overexpression dopamine (DA) due to the use of addictive drugs has caused concern and urgently needs to be addressed. The method used in our study is known as biomimetic sol-gel synthesis. We undertook the experiment to develop molecularly imprinted xerogel polymers (MIXPs) through template molecules dopamine polymerized with polyethyleneimine (PEI), then self-assembled and crosslinked with tetramethoxysilane (TMOS) in the form of non-covalent hydrogen bonds by using biomimetic sol-gel process, and then eluted template DA will leave a blotting site. Monoamine oxidase immobilized MIXPs (MAO-MIXPs) was obtained by coating monoamine oxidase onto MIXPs. The synthesis optimization of MAO-MIXPs was finally set as the ratio of DA template, PEI and MAO coating (DA 40 mg, PEI 0.6 mL, MAO 2.5 mg·g-1) to achieve highly selective adsorption toward DA in artificial cerebrospinal fluid based on the adsorption performance and degradation performance. The micromorphologies and physical-chemical properties of MAO-MIXPs were characterized by scanning electron microscopy, differential scanning calorimeter and Fourier transform infrared spectroscopy, and then amount of adsorption was calculated with adsorption equation. Simultaneously, the Brunner-Emmet-Teller (BET) and Langmuir model were simulated. It was found that the adsorption behavior tended to be monolayer adsorption. This new molecularly imprinted polymer demonstrated potential dopamine expression regulation for highly selective recognition, adsorption and degradation of dopamine.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2021 Type: Article