Your browser doesn't support javascript.
loading
Anthocyanins from Clitoria ternatea Attenuate Food-Borne Penicillium expansum and its Potential Application as Food Biopreservative
Natural Product Sciences ; : 125-131, 2017.
Article in English | WPRIM | ID: wpr-88718
ABSTRACT
Clitoria ternatea or Commonly known blue pea, is a perennial climber crop native to Asian countries. The current study was aimed to evaluate the antimicrobial activity C. ternatea extract on food borne microorganisms and its antifungal effect on Penicillium expansum. The extract showed significant antimicrobial activity against 3 Gram positive bacteria, 2 Gram negative bacteria and 1 filamentous fungus on disc diffusion assay. The extract also showed good biocidal effect on all Gram positive bacteria tested and P. expansum. However, the kill curve analysis revealed that the fungicidal activity of the extract against P. expansum conidia was depend on the concentration of the extract and the time of exposure of the conidia to the extract. The scanning electron micrograph of the extract treated P. expansum culture showed alterations in the morphology of fungal hyphae. The germination of P. expansum conidia was completely inhibited and conidial development was totally suppressed by the extract, suggesting the possible mode of action of anthocyanin. Besides, the extract also exhibited 5.0-log suppression of microbial growth relative to control in the rice model. The results indicate the potential use of the C. ternatea anthocyanin as food biopreservative.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Penicillium / Spores, Fungal / Peas / Germination / Hyphae / Clitoria / Asian People / Diffusion / Fungi / Gram-Negative Bacteria Limits: Humans Language: English Journal: Natural Product Sciences Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Penicillium / Spores, Fungal / Peas / Germination / Hyphae / Clitoria / Asian People / Diffusion / Fungi / Gram-Negative Bacteria Limits: Humans Language: English Journal: Natural Product Sciences Year: 2017 Type: Article