Your browser doesn't support javascript.
loading
Luteolin inhibits H2O2 -induced cellular senescence via modulation of SIRT1 and p53
The Korean Journal of Physiology and Pharmacology ; : 297-305, 2021.
Article in English | WPRIM | ID: wpr-896245
ABSTRACT
Luteolin, a sort of flavonoid, has been reported to be involved in neuroprotective function via suppression of neuroinflammation. In this study, we investigated the protective effect of luteolin against oxidative stress-induced cellular senescence and its molecular mechanism using hydrogen peroxide (H2O2)-induced cellular senescence model in House Ear Institute-Organ of Corti 1 cells (HEI-OC1). Our results showed that luteolin attenuated senescent phenotypes including alterations of morphology, cell proliferation, senescence-associated β-galactosidase expression, DNA damage, as well as related molecules expression such as p53 and p21 in the oxidant challenged model. Interestingly, we found that luteolin induces expression of sirtuin 1 in dose- and time-dependent manners and it has protective role against H2O2 -induced cellular senescence by upregulation of sirtuin 1 (SIRT1). In contrast, the inhibitory effect of luteolin on cellular senescence under oxidative stress was abolished by silencing of SIRT1. This study indicates that luteolin effectively protects against oxidative stress-induced cellular senescence through p53 and SIRT1. These results suggest that luteolin possesses therapeutic potentials against age-related hearing loss that are induced by oxidative stress.
Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: The Korean Journal of Physiology and Pharmacology Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: The Korean Journal of Physiology and Pharmacology Year: 2021 Type: Article