Your browser doesn't support javascript.
loading
Bone Microarchitecture at the Femoral Attachment of the Posterior Cruciate Ligament (PCL) by Texture Analysis of Magnetic Resonance Imaging (MRI) in Patients with PCL Injury: an Indirect Reflection of Ligament Integrity
Investigative Magnetic Resonance Imaging ; : 93-100, 2021.
Article in English | WPRIM | ID: wpr-898837
ABSTRACT
Purpose@#(1) To evaluate the trabecular pattern at the femoral attachment of the posterior cruciate ligament (PCL) in patients with a PCL injury; (2) to analyze bone microarchitecture by applying gray level co-occurrence matrix (GLCM)-based texture analysis; and (3) to determine if there is a significant relationship between bone microarchitecture and posterior instability. @*Materials and Methods@#The study included 96 patients with PCL tears. Trabecular patterns were evaluated on T2-weighted MRI qualitatively, and were evaluated by GLCM texture analysis quantitatively. The grades of posterior drawer test (PDT) and the degrees of posterior displacement on stress radiographs were recorded. The 96 patients were classified into two groups acute and chronic injury. And 27 patients with no PCL injury were enrolled for control. Pearson’s correlation coefficient and one-way ANOVA with Bonferroni test were conducted for statistical analyses. This protocol was approved by the Institutional Review Board. @*Results@#A thick and anisotropic trabecular bone pattern was apparent in normal or acute injury (n = 57/61;93.4%), but was not prominent in chronic injury and posterior instability (n = 31/35;88.6%). Grades of PDT and degrees of posterior displacement on stress radiograph were not correlated with texture parameters. However, the texture analysis parameters of chronic injury were significantly different from those of acute injury and control groups (P < 0.05). @*Conclusion@#The trabecular pattern and texture analysis parameters are useful in predicting posterior instability in patients with PCL injury. Evaluation of the bone microarchitecture resulting from altered biomechanics could advance the understanding of PCL function and improve the detection of PCL injury.
Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: Investigative Magnetic Resonance Imaging Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: Investigative Magnetic Resonance Imaging Year: 2021 Type: Article