Your browser doesn't support javascript.
loading
Soil Physical and Chemical Properties, Microorganisms and Metabolites in Different Culture Environments of Gastrodia elata / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 164-174, 2021.
Article in Chinese | WPRIM | ID: wpr-906344
ABSTRACT

Objective:

To study the soil physical and chemical properties, microorganisms, and metabolites in different culture environments of <italic>Gastrodia elata</italic>, so as to provide scientific basis for subsequent cultivation of <italic>G. elata</italic> in multiple environments.

Method:

The tubersphere soil of <italic>G. elata</italic> cultured in different environments was collected for analyzing the soil nutrients, microbial numbers, and metabolite differences using the agrochemical method, plate-count method, and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS)-based non-targeted metabonomic approach.

Result:

The analysis of soil physical and chemical properties revealed the highest soil moisturepH, available potassium, and available phosphorus in the spinney and the highest electrical conductivity, total nitrogenalkali-hydrolyzable nitrogen, and organic matter in the pinewood. As demonstrated by the quantitative analysis of soil microorganisms, the cultivable microorganisms were bacteriaactinomycetes, and fungi, with the bacterial population and total microbial biomass in the spinney and the number of fungi and actinomycetes in the barren slope detected to be the largest. The ratio of bacteria to fungi (B/F value) in the pinewood was the highest, while that in the barren slope was the lowest. The results of metabonomic research demonstrated that the compositions and quantities of soil metabolites in the spinney (Z group), pinewood (S group), and barren slope (HD group) varied. Through comparisons between S and Z groups, between HD and Z groups, as well as between HD and S groups by orthogonal partial least squares discriminant analysis (OPLS-DA), 18, 35, and 24 differential metabolites were separately screened out, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis yielded 5, 9, and 13 metabolic pathways. There existed a significant causal relationship of the soil physical and chemical properties and microbial numbers with the metabolites.

Conclusion:

The soil physical and chemical properties, microbial numbers, and metabolite changes differed significantly in different culture environments of <italic>G. elata</italic>, which were sorted by the suitability in a descending order as follows: spinney > pinewood >barren slope. The soil physical and chemical properties and microbial numbers are the crucial factors driving changes in soil metabolites, suggesting that regulating the soil physical and chemical characteristics and microbial characteristics in the culture environment is an important mechanism for maintaining the <italic>G. elata</italic>-soil-microbial symbiotic system.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2021 Type: Article