Your browser doesn't support javascript.
loading
Comparison of the diagnostic effect of early gastric cancer between magnifying blue laser imaging model and magnifying narrow-band imaging model based on deep learning / 中华消化杂志
Chinese Journal of Digestion ; (12): 606-612, 2021.
Article in Chinese | WPRIM | ID: wpr-912216
ABSTRACT

Objective:

To develop early gastric cancer (EGC) detection system of magnifying blue laser imaging (ME-BLI) model and magnifying narrow-band imaging (ME-NBI) model based on deep convolutional neural network, to compare the performance differences of the two models and to explore the effects of training methods on the accuracy.

Methods:

The images of benign gastric lesions and EGC under ME-BLI and ME-NBI were respectively collected. A total of five data sets and three test sets were collected. Data set 1 included 2 024 noncancerous lesions and 452 EGC images under ME-BLI. Data set 2 included 2 024 noncancerous lesions and 452 EGC images under ME-NBI. Data set 3 was the combination of data set 1 and 2 (a total of 4 048 noncancerous lesions and 904 EGC images under ME-BLI and ME-NBI). Data set 4 on the basis of data set 2, another 62 noncancerous lesions and 2 305 EGC images under ME-NBI were added (2 086 noncancerous lesions and 2 757 EGC images under ME-NBI). Data set 5 on the basis of data set 3, another 62 noncancerous lesions and 2 305 EGC images under ME-NBI were added(4 110 noncancerous lesions and 3 209 EGC images under ME-NBI and ME-BLI). Test set A included 422 noncancerous lesions and 197 EGC images under ME-BLI. Test set B included 422 noncancerous lesions and 197 EGC images under ME-NBI. Test set C was the combination of test set A and B (844 noncancerous and 394 EGC images under ME-BLI and ME-NBI). Five models were constructed according to these five data sets respectively and their performance was evaluated in the three test sets. Per-lesion video was collected and used to compare the performance of deep convolutional neural network models under ME-BLI and ME-NBI for the detection of EGC in clinical environment, and compared with four senior endoscopy doctors. The primary endpoint was the diagnostic accuracy of EGG, sensitivity and specificity. Chi-square test was used for statistical analysis.

Results:

The performance of model 1 was the best in test set A with the accuracy, sensitivity and specificity of 76.90% (476/619), 63.96% (126/197) and 82.94% (350/422), respectively. The performance of model 2 was the best in test set B with the accuracy, sensitivity and specificity of 86.75% (537/619), 92.89% (183/197) and 83.89% (354/422), respectively. The performance of model 3 was the best in test set B with the accuracy, sensitivity and specificity of 86.91% (538/619), 84.26% (166/197) and 88.15% (372/422), respectively. The performance of model 4 was the best in test set B with the accuracy, sensitivity and specificity of 85.46% (529/619), 95.43% (188/197) and 80.81% (341/422), respectively. The performance of model 5 was the best in test set B, with the accuracy, sensitivity and specificity of 83.52% (517/619), 96.95% (191/197) and 77.25% (326/422), respectively. In terms of image recognition of EGC, the accuracy of models 2 to 5 was higher than that of model 1, and the differences were statistically significant ( χ2=147.90, 149.67, 134.20 and 115.30, all P<0.01). The sensitivity and specificity of models 2 and 3 were higher than those of model 1, the specificity of model 2 was lower than that of model 3, and the differences were statistically significant ( χ2=131.65, 64.15, 207.60, 262.03 and 96.73, all P < 0.01). The sensitivity of models 4 and 5 was higher than those of models 1 to 3, and the specificity of models 4 and 5 was lower than those of models 1 to 3, and the differences were statistically significant ( χ2=151.16, 165.49, 71.35, 112.47, 132.62, 153.14, 176.93, 74.62, 14.09, 15.47, 6.02 and 5.80, all P<0.05). The results of video test based on lesion showed that the average accuracy of doctors 1 to 4 was 68.16%. And the accuracy of models 1 to 5 was 69.47% (66/95), 69.47% (66/95), 70.53% (67/95), 76.84% (73/95) and 80.00% (76/95), respectively. There were no significant differences in the accuracy among models 1 to 5 and between models 1 to 5 and doctors 1 to 4 (all P>0.05).

Conclusions:

ME-BLI EGC recognition model based on deep learning has good accuracy, but the diagnostic effecacy is sligntly worse than that of ME-NBI model. The effects of EGC recognition model of ME-NBI combined with ME-BLI is better than that of a single model. A more sensitive ME-NBI model can be obtained by increasing the number of ME-NBI images, especially the images of EGG, but the specificity is worse.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Diagnostic study Language: Chinese Journal: Chinese Journal of Digestion Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Diagnostic study Language: Chinese Journal: Chinese Journal of Digestion Year: 2021 Type: Article