Your browser doesn't support javascript.
loading
Research on the construction of drug knowledge base based on machine learning / 中华医院管理杂志
Article in Zh | WPRIM | ID: wpr-912731
Responsible library: WPRO
ABSTRACT
Objective:To construct a drug knowledge base based on drug instructions.Methods:Six hundred randomly selected drug instructions were labeled manually and divided into training set and test set. The training was based on bidirectional long short-term memory(Bi-LSTM) and conditional random fields(CRF) model to complete the recognition of medical entities. The extracted entities were standardized by the hybrid model of " similarity calculation and rule mapping table" , and then the drug information was imported into the Access database.Results:In the task of named entity recognition based on Bi-LSTM and CRF model, except for the crowd entities, the other entities had achieved good results with an F-value higher than 85%. Based on the hybrid model of " similarity calculation and rule mapping table" , the accuracy of entity standardization was 88.23%.Conclusions:The effect of the machine learning model in this study is similar to that of other named entity recognition and entity standardization studies, which can complete the task of drug knowledge base construction satisfactorily.
Key words
Full text: 1 Index: WPRIM Language: Zh Journal: Chinese Journal of Hospital Administration Year: 2021 Type: Article
Full text: 1 Index: WPRIM Language: Zh Journal: Chinese Journal of Hospital Administration Year: 2021 Type: Article