Your browser doesn't support javascript.
loading
Tumor microenvironment responsive liposomes blocking CXCL12/CXCR4 pathway and synergistically enhancing immune efficacy of anti-PD-L1 / 药学学报
Acta Pharmaceutica Sinica ; (12): 178-187, 2022.
Article in Chinese | WPRIM | ID: wpr-913162
ABSTRACT
Blocking immune checkpoint programmed cell death receptor 1 (PD-1) or programmed death receptor-ligand 1 (PD-L1) can enhance anti-tumor activity of effector T cells. However, the lack of response in many patients to PD-1/PD-L1 therapy remains a question. Improving the immunosuppressive tumor microenvironment (TME) to enhance the efficacy of immune checkpoint inhibitors has become a promising cancer treatment strategy. We constructed a liposome system (PD-L1/siCXCL12-Lp) of CXCL12 siRNA and anti-PD-L1 peptide with matrix metalloproteinases (MMPs) responsiveness, which combined the TME regulation of siCXCL12 and the immune regulation of anti-PD-L1 peptide. All animal experiments were approved by the Biomedical Ethics Committee of Peking University. The authors found that PD-L1/siCXCL12-Lp directly down-regulated the expression of CXCL12 in vitro (33.8%) and in vivo (15.5%). It also effectively increased the ratio of CD8+/Treg by 20.0%, which helped the anti-PD-L1 peptide to better exert its immune effect. The combination therapy significantly inhibited tumor growth (52.08%) with great safety, which explored a new idea for cancer immunotherapy.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2022 Type: Article