Your browser doesn't support javascript.
loading
Research on the detection algorithm of electrocardiogram characteristic wave based on energy segmentation and stationary wavelet transform / 生物医学工程学杂志
Journal of Biomedical Engineering ; (6): 1181-1192, 2021.
Article in Chinese | WPRIM | ID: wpr-921860
ABSTRACT
The detection of electrocardiogram (ECG) characteristic wave is the basis of cardiovascular disease analysis and heart rate variability analysis. In order to solve the problems of low detection accuracy and poor real-time performance of ECG signal in the state of motion, this paper proposes a detection algorithm based on segmentation energy and stationary wavelet transform (SWT). Firstly, the energy of ECG signal is calculated by segmenting, and the energy candidate peak is obtained after moving average to detect QRS complex. Secondly, the QRS amplitude is set to zero and the fifth component of SWT is used to locate P wave and T wave. The experimental results show that compared with other algorithms, the algorithm in this paper has high accuracy in detecting QRS complex in different motion states. It only takes 0.22 s to detect QSR complex of a 30-minute ECG record, and the real-time performance is improved obviously. On the basis of QRS complex detection, the accuracy of P wave and T wave detection is higher than 95%. The results show that this method can improve the efficiency of ECG signal detection, and provide a new method for real-time ECG signal classification and cardiovascular disease diagnosis.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Arrhythmias, Cardiac / Algorithms / Signal Processing, Computer-Assisted / Electrocardiography / Wavelet Analysis / Heart Rate Type of study: Diagnostic study / Prognostic study Limits: Humans Language: Chinese Journal: Journal of Biomedical Engineering Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Arrhythmias, Cardiac / Algorithms / Signal Processing, Computer-Assisted / Electrocardiography / Wavelet Analysis / Heart Rate Type of study: Diagnostic study / Prognostic study Limits: Humans Language: Chinese Journal: Journal of Biomedical Engineering Year: 2021 Type: Article