Your browser doesn't support javascript.
loading
Molecular mechanism of ovarian toxicity of Hook.F. a study based on network pharmacology and molecular docking / 浙江大学学报·医学版
Journal of Zhejiang University. Medical sciences ; (6): 62-72, 2022.
Article in English | WPRIM | ID: wpr-928657
ABSTRACT
To explore the mechanism of ovarian toxicity of Hook. F. (TwHF) by network pharmacology and molecular docking. The candidate toxic compounds and targets of TwHF were collected by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Comparative Toxicogenomics Database (CTD). Then, the potential ovarian toxic targets were obtained from CTD, and the target genes of ovarian toxicity of TwHF were analyzed using the STRING database. The protein-protein interaction (PPI) network was established by Cytoscape and analyzed by the cytoHubba plug-in to identify hub genes. Additionally, the target genes of ovarian toxicity of TwHF were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses by using the R software. Finally, Discovery Studio software was used for molecular docking verification of the core toxic compounds and the hub genes. Nine candidate toxic compounds of TwHF and 56 potential ovarian toxic targets were identified in this study. Further network analysis showed that the core ovarian toxic compounds of TwHF were triptolide, kaempferol and tripterine, and the hub ovarian toxic genes included , , , , , , , , and . Besides, the GO and KEGG analysis indicated that TwHF caused ovarian toxicity through oxidative stress, reproductive system development and function, regulation of cell cycle, response to endogenous hormones and exogenous stimuli, apoptosis regulation and aging. The docking studies suggested that 3 core ovarian toxic compounds of TwHF were able to fit in the binding pocket of the 10 hub genes. TwHF may cause ovarian toxicity by acting on 10 hub genes and 140 signaling pathways.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Drugs, Chinese Herbal / Protein Interaction Maps / Molecular Docking Simulation / Network Pharmacology / Medicine, Chinese Traditional Type of study: Diagnostic study Language: English Journal: Journal of Zhejiang University. Medical sciences Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Drugs, Chinese Herbal / Protein Interaction Maps / Molecular Docking Simulation / Network Pharmacology / Medicine, Chinese Traditional Type of study: Diagnostic study Language: English Journal: Journal of Zhejiang University. Medical sciences Year: 2022 Type: Article