Your browser doesn't support javascript.
loading
Effects of P311 on the angiogenesis ability of human microvascular endothelial cell 1 in vitro and its molecular mechanism / 中华烧伤杂志
Chinese Journal of Burns ; (6): 119-129, 2022.
Article in Chinese | WPRIM | ID: wpr-935986
ABSTRACT

Objective:

To explore the effects of P311 on the angiogenesis ability of human microvascular endothelial cell 1 (HMEC-1) in vitro and the potential molecular mechanism.

Methods:

The experimental research method was used. HMEC-1 was collected and divided into P311 adenovirus group and empty adenovirus group according to the random number table (the same grouping method below), which were transfected correspondingly for 48 h. The cell proliferation activity was detected using the cell counting kit 8 on 1, 3, and 5 days of culture. The residual scratch area of cells at post scratch hour 6 and 11 was detected by scratch test, and the percentage of the residual scratch area was calculated. The blood vessel formation of cells at 8 h of culture was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The protein expressions of vascular endothelial growth factor receptor 2 (VEGFR2), phosphorylated VEGFR2 (p-VEGFR2), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated ERK1/2 (p-ERK1/2) in cells were detected by Western blotting. HMEC-1 was collected and divided into P311 adenovirus+small interfering RNA (siRNA) negative control group, empty adenovirus+siRNA negative control group, P311 adenovirus+siRNA-VEGFR2 group, and empty adenovirus+siRNA-VEGFG2 group, which were treated correspondingly. The protein expressions of VEGFR2, p-VEGFR2, ERK1/2, and p-ERK1/2 in cells were detected by Western blotting at 24 h of transfection. The blood vessel formation of cells at 24 h of transfection was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. HMEC-1 was collected and divided into P311 adenovirus+dimethylsulfoxide (DMSO) group, empty adenovirus+DMSO group, P311 adenovirus+ERK1/2 inhibitor group, and empty adenovirus+ERK1/2 inhibitor group, which were treated correspondingly. The protein expressions of ERK1/2 and p-ERK1/2 in cells were detected by Western blotting at 2 h of treatment. The blood vessel formation of cells at 2 h of treatment was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The sample number at each time point in each group was 6. Data were statistically analyzed with independent sample t test, analysis of variance for repeated measurement, one-way analysis of variance, and least significant difference test.

Results:

Compared with that of empty adenovirus group, the proliferation activity of cells in P311 adenovirus group did not show significant difference on 1, 3, and 5 days of culture (with t values of -0.23, -1.30, and -1.52, respectively, P>0.05). The residual scratch area percentages of cells in P311 adenovirus group were significantly reduced at post scratch hour 6 and 11 compared with those of empty adenovirus group (with t values of -2.47 and -2.62, respectively, P<0.05). At 8 h of culture, compared with those of empty adenovirus group, the number of nodes and total length of the tubular structure of cells in P311 adenovirus group were significantly increased (with t values of 4.49 and 4.78, respectively, P<0.01). At 48 h of transfection, compared with those of empty adenovirus group, the protein expressions of VEGFR2 and ERK1/2 of cells in P311 adenovirus group showed no obvious changes (P>0.05), and the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus group were significantly increased (with t values of 17.27 and 16.08, P<0.01). At 24 h of transfection, the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA negative control group (P<0.01). The protein expressions of VEGFR2, p-VEGFR2, and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in P311 adenovirus+siRNA-VEGFR2 group (P<0.01). The protein expressions of VEGFR2 and p-ERK1/2 of cells in empty adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA-VEGFR2 group (P<0.05 or P<0.01). At 24 h of transfection, the number of nodes of the tubular structure in cells of P311 adenovirus+siRNA negative control group was 720±62, which was significantly more than 428±38 in empty adenovirus+siRNA negative control group and 364±57 in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+siRNA negative control group was (21 241±1 139) μm, which was significantly longer than (17 005±1 156) μm in empty adenovirus+siRNA negative control group and (13 494±2 465) μm in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+siRNA negative control group was significantly more than 310±75 in empty adenovirus+siRNA-VEGFR2 group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+siRNA negative control group was significantly longer than (11 600±2 776) μm in empty adenovirus+siRNA-VEGFR2 group (P<0.01). At 2 h of treatment, the protein expression of p-ERK1/2 of cells in P311 adenovirus+DMSO group was significantly higher than that in empty adenovirus+DMSO group and P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01), and the protein expression of p-ERK1/2 of cells in empty adenovirus+DMSO group was significantly higher than that in empty adenovirus+ERK1/2 inhibitor group (P<0.05). At 2 h of treatment, the number of nodes of the tubular structure in cells of P311 adenovirus+DMSO group was 726±72, which was significantly more than 421±39 in empty adenovirus+DMSO group and 365±41 in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+DMSO group was (20 318±1 433) μm, which was significantly longer than (16 846±1 464) μm in empty adenovirus+DMSO group and (15 114±1 950) μm in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+DMSO group was significantly more than 317±67 in empty adenovirus+ERK1/2 inhibitor group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+DMSO group was significantly longer than (13 188±2 306) μm in empty adenovirus+ERK1/2 inhibitor group (P<0.01).

Conclusions:

P311 can enhance the angiogenesis ability of HMEC-1 by activating the VEGFR2/ERK1/2 signaling pathway.
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Endothelium, Vascular / Transfection / Signal Transduction / Cell Line / Adenoviridae / Oncogene Proteins / Neovascularization, Physiologic / Endothelial Cells / Vascular Endothelial Growth Factor A / Nerve Tissue Proteins Limits: Humans Language: Chinese Journal: Chinese Journal of Burns Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Endothelium, Vascular / Transfection / Signal Transduction / Cell Line / Adenoviridae / Oncogene Proteins / Neovascularization, Physiologic / Endothelial Cells / Vascular Endothelial Growth Factor A / Nerve Tissue Proteins Limits: Humans Language: Chinese Journal: Chinese Journal of Burns Year: 2022 Type: Article