Your browser doesn't support javascript.
loading
Establishment and application of the tenfold rehydration formula for emergency resuscitation of adult patients after extensive burns / 中华烧伤杂志
Chinese Journal of Burns ; (6): 236-241, 2022.
Article in Chinese | WPRIM | ID: wpr-936000
ABSTRACT

Objective:

To explore the scientificity and feasibility of the tenfold rehydration formula for emergency resuscitation of adult patients after extensive burns.

Methods:

A retrospective observational study was conducted. The total burn area (30%-100% total body surface area (TBSA)) and body weight (45-135 kg) of 170 adult patients (135 males and 35 females, aged (42±14) years) with extensive burns admitted to the Fourth Medical Center of PLA General Hospital from December 2016 to December 2019 were collected. The 6 461 pairs of simulated data obtained after pairing each body weight in 45 to 135 kg (programmed in steps of 1 kg) with each area in 30% to 100% TBSA (programmed in steps of 1%TBSA) were plugged into four recognized rehydration formulas--Parkland's formula, Brooke's formula, the 304th PLA Hospital formula, and the Third Military Medical University formula and two emergency rehydration formulas--the simplified first aid resuscitation plan for extensive burn patients proposed by the World Health Organization's Technical Working Group on Burns (TWGB, hereinafter referred to as the TWGB formula) and the tenfold rehydration formula proposed by the author of this article to calculate the rehydration rate within 8 hours after injury (hereinafter referred to as the rehydration rate), with results being displayed by a programming step of 10%TBSA for the total burn area. Taking the calculation results of four recognized rehydration formulas as the reasonable rehydration rate, the accuracy of rehydration rates calculated by two emergency rehydration formulas were calculated and compared. The body weight of 45-135 kg was divided into three segments by the results of maximum body weight at a reasonable rehydration rate calculated by the tenfold rehydration formula when the total burn area was 30% and 100% TBSA, respectively. The accuracy of rehydration rate calculated by two emergency rehydration formulas in each body weight segment was compared. When the rehydration rates calculated by two emergency rehydration formulas were unreasonable, the differences in rehydration rates between the two were compared. Statistical distribution of the aforementioned three body weight segments in the aforementioned 170 patients was counted. Using the total burn area and body weight data of the aforementioned 170 patients, the accuracy of rehydration rate calculated by two emergency rehydration formulas was calculated and compared as before. Data were statistically analyzed with McNemar test.

Results:

When the total burn area was 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% TBSA, respectively, and the body weight was 45-135 kg, the rehydration rates calculated by two emergency rehydration formulas did not exceed the maximum of the calculated results of four recognized rehydration formulas; the rehydration rate calculated by the TWGB formula did not change accordingly with total burn area, while the rehydration rate calculated by the tenfold rehydration formula did not change accordingly with body weight. Substituting 6 461 pairs of simulated data showed that the accuracy of rehydration rate calculated by the tenfold rehydration formula was 43.09% (2 784/6 461), which was significantly higher than 2.07% (134/6 461) of the TWGB formula, χ2=2 404.80, P<0.01. When the body weights were 45-62 kg and 63-93 kg, the accuracy rates of rehydration rate calculated by the tenfold rehydration formula were 100% (1 278/1 278) and 68.42% (1 506/2 201), respectively, which were significantly higher than 0 (0/1 278) and 0.05% (1/2 201) of the TWGB formula, χ2=1 276.00, 1 501.01, P<0.01; when the body weight was 94-135 kg, the accuracy rate of rehydration rate calculated by the tenfold rehydration formula was 0 (0/2 982), which was significantly lower than 4.46% (133/2 982) of the TWGB formula, χ2=131.01, P<0.01. When the rehydration rates calculated by two emergency rehydration formulas were both unreasonable, the rehydration rate calculated by the tenfold rehydration formula was greater than that calculated by the TWGB formula in most cases, accounting for 79.3% (2 808/3 543). Among the 170 patients, the proportions of those weighing 45-62, 63-93, and 94-135 kg were 25.29% (43/170), 65.88% (112/170), and 8.82% (15/170), respectively. Among the 170 patients, the accuracy rate of rehydration rate calculated by the tenfold rehydration formula was 69.41% (118/170), which was significantly higher than 3.53% (6/170) of the TWGB formula, χ2=99.36, P<0.01.

Conclusions:

Applying the tenfold rehydration formula to calculate the emergency rehydration rate in adults after extensive burns is simpler than four recognized rehydration formulas, and is superior to the TWGB formula. The tenfold rehydration formula is suitable for the front-line medical staffs that are not specialized in burns in pre-admission rescue of adult patients with extensive burns, which is worth popularizing.
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Resuscitation / Body Surface Area / Burns / Retrospective Studies / Fluid Therapy Type of study: Observational study Limits: Adult / Female / Humans / Male Language: Chinese Journal: Chinese Journal of Burns Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Resuscitation / Body Surface Area / Burns / Retrospective Studies / Fluid Therapy Type of study: Observational study Limits: Adult / Female / Humans / Male Language: Chinese Journal: Chinese Journal of Burns Year: 2022 Type: Article