Your browser doesn't support javascript.
loading
Effect of a novel radio-frequency atmospheric-pressure glow discharge plasma jet treatment on crosslinking of dentin collagen / 北京大学学报(医学版)
Journal of Peking University(Health Sciences) ; (6): 83-88, 2022.
Article in Chinese | WPRIM | ID: wpr-936116
ABSTRACT
OBJECTIVE@#To investigate the effect of a noval radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet on crosslinking of dentin collagen.@*METHODS@#(1) Twenty intact third molars were collected. The middle dentin discs were prepared for each tooth by low-speed water-cooled Isomet saw, and then immersed in 10% (mass fraction) H3PO4 solution for 16 h to obtain fully demine-ralized dentin collagen. The twenty dentin discs were then randomly divided into five groups. The control group was untreated while the four experimental groups were treated by plasma jet with gas temperature of 4 ℃ for different times (20 s, 30 s, 40 s, and 50 s). The structure and crosslinking degree of dentin collagen were characterized by attenuated total reflection-Fourier transform infrared spectroscopy. The surface morphology of demineralized dentin was observed by scanning electron microscope, and the microstructure was observed by transmission electron microscope. (2) Fourty non-caries third molars were collected to prepare 5 g fine dentin powder, then completely demineralized with 10% H3PO4 solution. The control group was untreated, while the four experimental groups were treated by plasma jet for 20 s, 30 s, 40 s and 50 s. The crosslinking degree of each group was determined by ninhydrin colorimetric method. (3) Forty intact third molars were collected to obtain dentin strips. Only two central symmetrical dentin strips (nasty 80) were taken from each tooth and immersed in 10% H3PO4 solution for 16 h to obtain fully demineralized dentin collagen. Eighty dentine collagen fiber strips were randomly divided into five groups. The control group was untreated and the axial surfaces of dentin collagen fiber strips in the expe-rimental groups were treated with the plasma jet for 20 s, 30 s, 40 s and 50 s. The ultimate tensile strength of dentin was measured by universal mechanical machine.@*RESULTS@#(1) The surface morphology of demineralized dentin observed by scanning electron microscope showed that the network structure of collagen fibers on the surface of demineralized dentin treated with the plasma jet for 20 s, 30 s and 40 s could maintain the uncollapsed three-dimensional structure, and part of the microstructure was destroyed after plasma jet treated for 50 s. After being treated by plasma jet for 20 s, 30 s and 40 s, the three-dimensional structure was uncollapsed, and the typical periodic transverse pattern of natural type Ⅰ collagen fiber could be seen. The results of infrared spectra showed that the secondary conformation of dentin collagen fibers was the same as that of the control group after being treated with the plasma jet, and the intensity of amide band was significantly increased after being treated for 30 s and 40 s. (2) The results of ninhydrin crosslinking test showed that the crosslinking ratio of dentin collagen treated by plasma jet for 30 s and 40 s was the highest, and the difference was statistically significant (P < 0.05). (3) The results of dentin ultimate tensile strength showed that the control group was (1.67±0.24) MPa, and the plasma jet treated 20 s, 30 s, 40 s and 50 s groups were (4.21±0.15) MPa, (7.06±0.30) MPa, (7.32±0.27) MPa, and (6.87±0.17) MPa, which were significantly different from that of the control group (P < 0.05).@*CONCLUSION@#The novel RF-APGD plasma jet treatment can promote the crosslinking degree of demineralized dentin collagen and improve their ultimate tensile strength.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Tensile Strength / Microscopy, Electron, Scanning / Dental Bonding / Collagen / Dentin-Bonding Agents / Dentin Language: Chinese Journal: Journal of Peking University(Health Sciences) Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Tensile Strength / Microscopy, Electron, Scanning / Dental Bonding / Collagen / Dentin-Bonding Agents / Dentin Language: Chinese Journal: Journal of Peking University(Health Sciences) Year: 2022 Type: Article