Your browser doesn't support javascript.
loading
The overall action molecular mechanism of anti-hepatitis B active extracts in Flos chrysanthemi indici based on epigenetics and metabonomics / 药学学报
Acta Pharmaceutica Sinica ; (12): 2352-2363, 2022.
Article in Chinese | WPRIM | ID: wpr-937036
ABSTRACT
Using the concepts and methods of epigenetics and metabolomics, to investigate the overall action molecular mechanism of Chrysanthemi indici C (CIC), the anti-hepatitis B virus (HBV) active extracts from Flos chrysanthemi indici. The inhibitory effects of CIC on proliferation and hepatitis B surface antigen (HBsAg), hepatitis B envelope antigen (HBeAg) and HBV-DNA of HepG2.2.15 cells were detected by CCK-8 and antigen kit. The DNA methyltransferases (DNMTs)/ten-eleven-translocation-2 (TET2) equilibrium was detected by ELISA. Illumina 850K methylation chip, pyrosequencing and qPCR were used to determine the action pathway and target of CIC by GO and KEGG analysis. Cell metabolites were extracted with 80% methanol, and the changes of differential metabolites, differential metabolic pathways and cell microenvironment were detected by LC-MS and other metabolomics methods. The results showed that CIC could inhibit the proliferation, HBsAg, HBeAg and HBV-DNA of HepG2.2.15 cells obviously, down-regulate DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a) and DNA methyltransferase 3b (DNMT3b), up-regulate TET2, and restore the balance of DNMTs/TET2. The action targets of CIC were phospholipase C gamma 2 (PLCG2), phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), 5-hydroxytryptamine receptor 2B (HTR2B), nerve growth factor (NGF), mainly involved in lipid metabolism, inflammation mediated regulation of transient receptor potential (TRP), phospholipase D signaling and advanced glycation end product-receptor for AGE (AGE-RAGE) signaling in diabetic complications pathways. CIC could significantly affect fatty acid metabolism and had great influence on phenolic acid, alkaloid and lipid metabolites in cell microenvironment. These results suggest that the action mechanism of CIC may be the synergistic action of multiple pathways and multiple targets, including related inflammatory pathways, immune pathways and lipid metabolism, through regulating epigenetic expression balance and restoring the balance of cell microenvironment.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Acta Pharmaceutica Sinica Year: 2022 Type: Article