Your browser doesn't support javascript.
loading
Mechanism of Xiao Qinglongtang Regulating Lung Water Transport-related Proteins Based on Theory of Lung Controlling Water Movement / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-11, 2022.
Article in Chinese | WPRIM | ID: wpr-940380
ABSTRACT
ObjectiveTo observe the regulatory effect of Xiao Qinglongtang and its ingredients on lung water transport-related proteins, and to explain the biological connotation of lung governing water movement, based on which the regulatory mechanism of Xiao Qinglongtang will be explored. MethodAccording to the composition rules of classical formula, Xiao Qinglongtang (11.22 g·kg-1), Guizhi Gancao (2.70 g·kg-1), Shaoyao Gancao (2.70 g·kg-1), Jiangxinwei (3.90 g·kg-1)and Banxia Muahuang (0.032 7 g·kg-1) were prepared. The pathological model of syndrome of cold fluid accumulated in lung of rats was established by the "coldness of body + drinking cold + cold bath" method, and Xiao Qinglongtang and its ingredients were administrated to intervene with the model rats. Lung function parameters of forced vital capacity (FVC), functional residual capacity (FRC), mean mid-expiratory flow (MMEF), inspiratory time (tI), and inspiratory time (tE) were determined by lung function analyzer. Hematoxylin and eosin (HE) staining was used to observe the changes in pathological morphology. The expression of aquaporin (AQP)1, AQP5, epithelial sodium channel α subunit(α-ENaC) and Na+-K+-ATPase in lung tissues of rats, the content of tumor necrosis factor -α(TNF-α), the mRNA expression of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) and cAMP-response element binding protein (CREB), and the protein expression of cAMP, PKA, CREB, and phosphorylated-CREB (p-CREB) were detected by immunohistochemistry (IHC), enzyme-linked immunosorbent assayELISA), Real-time fluorescence quantitative polymerase chain reactionReal-time PCR), and Western blot, respectively. ResultCompared with normal group, functions of FVC, FRC and MMEF in model group were significantly decreased (P<0.01), and the time of tI and tE was significantly prolonged (P<0.05,P<0.01). The content of TNF-α in lung tissue was significantly increased (P<0.01). The mRNA and protein expressions of cAMP, PKA and CREB in lung tissue were significantly decreased (P<0.01). The expression of AQP5 and α-ENAC in lung tissue decreased significantly. The alveolar cavity of rats was filled with edema fluid, surrounding tissue hyperemia, inflammatory cell infiltration, bronchial mucosa epithelial adhesion. Compared with model group, Xiao Qinglongtang and its fangyuan group could significantly enhance the FVC, FRC and MMEF functions of model rats (P<0.05,P<0.01), and tI and tE time were shortened (P<0.05,P<0.01). The content of TNF-α in lung tissues of Xiao Qinglongtang group, Guizhi Gancao group and Banxia Mahuang group was significantly decreased (P<0.01). The mRNA expressions of cAMP, PKA and CREB in Xiao Qinglongtang group were significantly up-regulated (P<0.01), and the mRNA expressions of cAMP and PKA in Guizhi Gancao, Jiangxinwei and Banxia Mahuang groups were significantly up-regulated (P<0.01). The protein expressions of cAMP, PKA and CREB in Xiao Qinglongtang group, Guizhi Gancao group, Jiangxinwei group and Banxia Mahuang group were significantly up-regulated (P<0.01), and the protein expression of CREB in Shaoyao Gancao group was significantly up-regulated(P<0.05). Xiao Qinglongtang could up-regulate the positive expression of AQP5 and α-ENAC, and Guizhi Gancao group could up-regulate the positive expression of α-ENAC. Xiao Qinglongtang and its fangyuan can reduce the lung edema, inflammatory cell infiltration and bronchial mucosal adhesion of model rats. ConclusionXiao Qinglongtang and its ingredients can reduce lung edema and inhibit inflammation by improving the expression of lung water transport-related proteins AQP1, AQP5, and α-ENaC through cAMP/PKA pathway, thereby restoring the lung functions in rats with syndrome of cold fluid accumulated in lung. Na+-K+-ATPase may play an auxiliary role in the regulation of lung water transport. This provides a certain objective basis for preliminarily elucidating the connotation of lung governing water movement from the perspective of lung water transport-related proteins.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article