Your browser doesn't support javascript.
loading
Protective Effects of Anmeidan on Cell Structure Against Neuronal Damage in Hippocampal CA1 Region of Sleep-deprived Rats / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-32, 2022.
Article in Chinese | WPRIM | ID: wpr-940416
ABSTRACT
ObjectiveTo investigate the effects of Anmeidan (AMD) on neuronal structure and neuronal marker protein expression in the hippocampal CA1 region of sleep-deprived (SD) rats. MethodRats were randomly divided into control group, model group, an AMD group (9.09 g·kg-1·d-1), and melatonin group (0.27 g·kg-1·d-1). Rats in the control group and the model group received equal volumes of physiologicol saline. The SD model was induced by the self-made sleep deprivation box for four weeks. Ethovision XT system detected and analyzed the spontaneous behaviors of rats. The histomorphology of neurons in the hippocampal CA1 region was observed by hematoxylin-eosin (HE) staining and Nissl staining, and the changes in Nissl bodies were observed by Nissl staining. The ultrastructure of hippocampal cells was observed by transmission electron microscopy (TEM). Immunohistochemistry was used to detect the expression of glial fibrillary acidic protein (GFAP), microtubule-associated protein 2 (MAP2), nestin, and neuronal nuclei (NeuN) in the CA1 region. ResultCompared with the control group, the model group showed longer distance, increased average activity speed, cumulative duration, average body fill, and higher activity frequency (P<0.01). Besides, the neurons in the CA1 region were reduced in number with disorganized arrangement, wrinkled nuclei, deeply stained cytoplasm, reduced Nissl bodies, swollen and deformed mitochondria, shortened cristae, and swollen Golgi vesicles. Furthermore, the mean integral absorbance (IA) value of GFAP increased and those of MAP2, nestin, and NeuN decreased (P<0.01). Compared with the model group, the AMD group showed shortened distance traveled, lower average activity speed, shorter cumulative duration, decreased average body fill, and reduced activity frequency (P<0.05, P<0.01). Moreover, the neurons in the CA1 region were relieved from damage with increased cell number, clear nuclei and cytoplasm, increased Nissl bodies, and relieved mitochondrial damage. The IA value of GFAP decreased and those of MAP2, nestin, and NeuN increased (P<0.05, P<0.01). ConclusionAMD can improve structural damage of neurons in the hippocampal CA1 region of sleep-deprived rats, which may be achieved by decreasing GFAP expression and increasing MAP2, nestin, and NeuN expression.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article