Your browser doesn't support javascript.
loading
Effect of Potassium Solubilizing Bacteria on Rhizosphere Soil Microenvironment of Paris polyphylla var. yunnanensis / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 172-179, 2022.
Article in Chinese | WPRIM | ID: wpr-940775
ABSTRACT
ObjectiveTo investigate the effects of the inoculation of potassium-solubilizing bacteria on the rhizosphere soil microenvironment of Paris polyphylla var. yunnanensis. MethodThe effects of different potassium-solubilizing bacteria on the physical and chemical propertiesmicrobial community structure, and soil enzyme activity in the rhizosphere soil of P. polyphylla var. yunnanensis were investigated by pot planting at room temperature. The correlation of various indexes was analyzed. ResultThe inoculation with different potassium-solubilizing bacteria could significantly affect the physical and chemical properties of rhizosphere soil of P. polyphylla var. yunnanensis. The mass fractions of available nitrogen, available phosphorus, and available potassium were 24.5-90.5 mg·kg-1, 2.53-25.9 mg·kg-1, and 132-312 mg·kg-1, respectively, and the soil pH was 7.08-7.75, which were in line with the optimal ranges of P. polyphylla var. yunnanensis planting. The inoculation of different potassium-solubilizing bacteria could affect the number of bacteriaactinomycetes, and fungi in rhizosphere soil to varying degrees. The transformation of soil from "fungal type" to "bacterial type" marks the improvement of soil fertility. It also affected the enzyme activity of rhizosphere soil, and the activities of neutral phosphataseprotease, and polyphenol oxidase showed an increasing trend. The correlation analysis showed that the number of bacteria was negatively correlated with the number of fungi (r=-0.856, P<0.01), positively correlated with the number of actinomycetes, the content of available nitrogen and available potassium, and negatively correlated with soil pH. ConclusionThe inoculation of potassium-solubilizing bacteria can effectively improve the content of available potassium, available nitrogen, available phosphorus, and other nutrients in the rhizosphere soil of P. polyphylla var. yunnanensis, improve soil fertility, alleviate the continuous cropping obstacles of P. polyphylla var. yunnanensis, and lay a theoretical foundation for the green and sustainable development of P. polyphylla var. yunnanensis.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Experimental Traditional Medical Formulae Year: 2022 Type: Article