Your browser doesn't support javascript.
loading
Role and related mechanism of Mst-1 on regulating hypoxic reoxygenation induced autophagy and apoptosis in cardiomyocytes of mouse / 中华心血管病杂志
Chinese Journal of Cardiology ; (12): 1060-1069, 2020.
Article in Chinese | WPRIM | ID: wpr-941220
ABSTRACT

Objective:

To explore the role and related mechanism of mammalian sterile 20-like kinase 1(Mst-1)in regulating hypoxia reoxygenation (HR) induced myocardial cell autophagy and apoptosis.

Methods:

Enzyme digestion method combined with differential adherent method was used to culture neonatal mouse myocardial cells. HR model was established by hypoxia for 24 hours and reoxygenation for 6 hours. The experimental groups including control group (normal cultured cardiomyocytes), Mst-1 empty virus group (cardiomyocytes transfected with recombinant lentiviral empty vector for 48 hours), Mst-1 knockdown group (recombinant lentivirus carrying Mst-1small interfering RNA (siRNA) was transfected into cardiomyocytes for 48 hours), Mst-1 overexpression group (cardiomyocytes were transfected with recombinant lentivirus carrying Mst-1 gene for 48 hours), HR group (cardiomyocytes exposed to HR), Mst-1 knockdown+HR group (HR model of cardiomyocyte was established 48 hours after transfection with recombinant lentivirus carrying Mst-1siRNA) and Mst-1 overexpression+HR group (HR model of cardiomyocyte was established 48 hours after transfection with recombinant lentivirus carrying Mst-1 gene). Real-time fluorescence quantitative RCR (qPCR) and Western blot were used to detect the relative expression of Mst-1 mRNA and protein in the cells, immunofluorescence staining was used to detect cardiomyocyte troponin T (cTnT), and autophagosomes and autophagy enzyme changes. TUNEL method was used to detect myocardial cell apoptosis, Western blot was adopted to detect autophagy-related protein microtubule-related protein 1 light chain 3 (LC3) Ⅱ/LC3 Ⅰ, P62 and apoptosis-related protein cleaved-caspase 9, pro-caspase 9, cleaved-caspase-3, pro-caspase-3, and myeloid leukemia 1 (MCL-1) expression. MCL-1 inhibitor A1210477 was used to validate the signaling pathway of Mst-1 on regulating cardiomyocyte apoptosis and autophagy.

Results:

Immunofluorescence detection revealed that the cultured cells expressed cardiomyocyte-specific marker cTnT. The expression of Mst-1 in cardiomyocytes increased in HR model. Lentiviral transfection could effectively inhibit or overexpress Mst-1 in treated cells. The levels of autophagosomes and autophagolysosomes in cardiomyocytes undergoing HR and in Mst-1 overexpression+HR group were lower than those of control group, while autophagosomes and autophagolysosomes in cardiomyocytes of Mst-1 knockdown+HR group was significantly higher than in the HR group (all P<0.05). The TUNEL results showed that the proportion of TUNEL positive cells was significantly increased in the HR group and Mst-1 overexpression+HR group than in the control group, while the proportion of TUNEL positive cells was significantly decreased in the Mst-1 knockdown group+HR group as compared to the HR group (all P<0.05). Western blot results showed that the LC3 Ⅱ/LC3 Ⅰ levels were significantly lower, while the expression levels of P62, cleaved-caspase-9 and cleaved-caspase-3 were significantly higher in the HR group and Mst-1 overexpression+HR group than in control group (all P<0.05). The LC3 Ⅱ/LC3 Ⅰ value was significantly higher, and the expression levels of P62, cleaved-caspase-9 and cleaved-caspase-3 were significantly lower in the Mst-1 knockdown+HR group than in the HR group (P both<0.05). The expression level of P-MCL-1 protein was significantly lower in cardiomyocytes of HR and Mst-1 overexpression+HR group than in control group, and the expression level of P-MCL-1 protein was higher in Mst-1 knockdown+HR group than in HR group (P both<0.05). The recovery experiment showed that inhibiting MCL-1 in cells can block the regulatory effect of Mst-1 siRNA on cell autophagy and apoptosis.

Conclusion:

Inhibiting Mst-1 expression in cardiomyocytes can promote the autophagy of cardiomyocytes induced by hypoxic reoxygenation and reduce the apoptosis of cardiomyocytes via activating McL-1.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Autophagy / Signal Transduction / Apoptosis / Myocytes, Cardiac / Hypoxia Limits: Animals Language: Chinese Journal: Chinese Journal of Cardiology Year: 2020 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Autophagy / Signal Transduction / Apoptosis / Myocytes, Cardiac / Hypoxia Limits: Animals Language: Chinese Journal: Chinese Journal of Cardiology Year: 2020 Type: Article