Your browser doesn't support javascript.
loading
Angiogenic property of cobalt and calcium-phosphorus doped coating on titanium surfaces in vitro / 口腔疾病防治
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 473-479, 2023.
Article in Chinese | WPRIM | ID: wpr-965919
ABSTRACT
Objective@# To investigate the effect of cobalt (Co) and calcium-phosphate (Ca/P) doped coating on titanium surfaces and their angiogenic effect.@*Methods @# Microarc oxidation (MAO) was used to prepare Co-Ca/P-doped and Co-doped coatings. Titanium (Ti) sheet without MAO treatment was used as control. Scanning electron microscopy (SEM) was used to observe the surface micromorphology of the coatings. Energy dispersive spectrometry (EDS) was also applied to detect the doped chemicals and their contents. Standard soaking solutions of these coatings were prepared using an endothelial cell medium (ECM) solution for subsequent angiogenesis experiments. Human umbilical vein endothelial cells (HUVECs) were cultured on Matrigel with ECM soaking solutions for 4 h and 8 h. The microvessels were observed under a microscope, and the number of microtubules and their interconnecting nodes were analyzed with Image J software. @*Results@# Co doped and Co-Ca/P-doped coatings were successfully prepared by MAO, which was demonstrated by both SEM observation and EDS analysis. SEM observation showed that irregular crystals of the above chemicals were present on both Co and Co-Ca/P-doped coatings, commonly with a diameter <2 μm. However, more crystals were observed on the Co-Ca/P coatings than on the Co coating, and the distribution of the crystals was more homogenous on the Co-Ca/P coatings. However, only polishing scratches were observed on the Ti sample surface. EDS analysis indicated that in contrast to only Co in the Co coating, Co, Ca and P were doped within the Co-Ca/P coating, and none of the three elements were observed on the Ti plate surface. The number of vascular rings and nodes formed by HUVECs in the extract of the Co-Ca/P group was significantly higher than that of the Co group (P<0.05), and the angiogenic effect of these two components was significantly better than that of the Ti group (P<0.05). @*Conclusion@#The Co-Ca/P coating exhibits good angiogenic properties in vitro and is valuable for the development of new titanium implants with high surface bioactivity.

Search on Google
Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Prevention and Treatment for Stomatological Diseases Year: 2023 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Prevention and Treatment for Stomatological Diseases Year: 2023 Type: Article